定義在R上的函數(shù)f(x)存在導(dǎo)函數(shù)y=f(x),如果x1,x2∈R,x1<x2,且xf(x)>-f(x)對一切x∈R恒成立,那么下列不等式一定成立的是( )
A.x1f(x1)>x2f(x2
B.x1f(x1)<x2f(x2
C.x1f(x2)>x2f(x1
D.x1f(x2)<x2f(x1
【答案】分析:先由條件xf(x)>-f(x)對一切x∈R恒成立,可知(xf(x))′>0,從而y=xf(x)為單調(diào)增函數(shù),故可判斷.
解答:解:根據(jù)題意,xf(x)>-f(x)對一切x∈R恒成立,
∴(xf(x))′>0
∴y=xf(x)為單調(diào)增函數(shù)
∵x1,x2∈R,x1<x2,
∴x1f(x1)<x2f(x2
故選B.
點評:本題以積的導(dǎo)數(shù)為載體,考查函數(shù)的單調(diào)性,關(guān)鍵是條件的等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當(dāng)x∈(0,4)時,f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達(dá)式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點的區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊答案