設(shè)函數(shù)f(x)=lnx-px+1,其中p為常數(shù).
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)當(dāng)p>0時,若對任意的x>0,恒有在f(x)≤0,求p的取值范圍;
(Ⅲ)求證:
【答案】分析:(1)先求定義域,在函數(shù)定義域內(nèi)連續(xù)可導(dǎo),討論滿足f′(x)=0的點附近的導(dǎo)數(shù)的符號的變化情況,來確定極值點.
(2)要使f(x)≤0恒成立,只需求函數(shù)的最大值,而該函數(shù)的最大值就是極大值即可.
(3)先令p=1,由(2)知,lnx-x+1≤0,從而有l(wèi)nn2≤n2-1,再進行求和,利用放縮法,然后用立項求和的方法進行求和即可得證.
解答:解:(Ⅰ)∵f(x)=lnx-px+1定義域為(0,+∞),
,
當(dāng)p≤0時,f′(x)>0,f(x)在(0,+∞)上無極值點
當(dāng)p>0時,令f'(x)=0,∴x=∈(0,+∞),f'(x)、f(x)隨x的變化情況如下表:

從上表可以看出:當(dāng)p>0時,f(x)有唯一的極大值點
(Ⅱ)當(dāng)p>0時,在處取得極大值,此極大值也是最大值,
要使f(x)≤0恒成立,只需,
∴p≥1
∴p的取值范圍為[1,+∞)
(Ⅲ)令p=1,由(Ⅱ)知,lnx-x+1≤0,
∴l(xiāng)nx≤x-1,
∵n∈N,n≥2
∴l(xiāng)nn2≤n2-1,

==
=
∴結(jié)論成立
點評:本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及函數(shù)恒等式與函數(shù)不等式問題,屬于難題,得分率不高.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2
(I)若當(dāng)x=-1時,f(x)取得極值,求a的值,并討論f(x)的單調(diào)性;
(II)若f(x)存在極值,求a的取值范圍,并證明所有極值之和大于ln
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)設(shè)函數(shù)f(x)=ln(1+x)-
2x
x+2
,證明:當(dāng)x>0時,f(x)>0;
(Ⅱ)從編號1到100的100張卡片中每次隨機抽取一張,然后放回,用這種方式連續(xù)抽取20次,設(shè)抽得的20個號碼互不相同的概率為P.證明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)設(shè)函數(shù)f(x)=ln(x2-x-6)的定義域為集合A,集合B={x|
5x+1
>1}.請你寫出一個一元二次不等式,使它的解集為A∩B,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2(a>
2
)
,
(1)若a=
3
2
,解關(guān)于x不等式f(e
x
-
3
2
)<ln2+
1
4
;
(2)證明:關(guān)于x的方程2x2+2ax+1=0有兩相異解,且f(m)和f(n)分別是函數(shù)f(x)的極小值和極大值(m,n為該方程兩根,且m>n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+2x2
(1)若當(dāng)x=-1時,f(x)取得極值,求a的值;
(2)在(1)的條件下,方程ln(x+a)+2x2-m=0恰好有三個零點,求m的取值范圍;
(3)當(dāng)0<a<1時,解不等式f(2x-1)<lna.

查看答案和解析>>

同步練習(xí)冊答案