已知全集U=R,集合A={x|x<-2或x>4},B={x|-3≤x≤3},則(CUA)∩B=( )
A.{x|-3≤x≤4}
B.{x|-2≤x≤3}
C.{x|-3≤x≤-2或3≤x≤4}
D.{x|-2≤x≤4}
【答案】分析:欲求(CUA)∩B,先求(CUA),根據(jù)補(bǔ)集的定義,只須求出不是集合A中的元素構(gòu)成的元素即得,最后與集合B求公共部分即可.
解答:解:∵A={x|x<-2或x>4},
∴CUA={x|-2≤x≤4},
又B={x|-3≤x≤3},
∴(CUA)∩B={x|-2≤x≤3}.
故選B.
點(diǎn)評:本題主要考查了交集及其運(yùn)算,以及補(bǔ)集及其運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|4≤2x<16},B={x|3≤x<5},求:
(Ⅰ)?U(A∩B)
(Ⅱ)若集合C={x|x>a},且B?C,求實(shí)數(shù)a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|2x<1},B={x|log3x>0},則A∩(?UB)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合M={x|2x>1},集合N={x|log2x>1},則下列結(jié)論中成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|(x-1)2≤4},則CUA等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={-1,0,1},B={x|x2-2x<0},則A∩?UB=( 。

查看答案和解析>>

同步練習(xí)冊答案