精英家教網 > 高中數學 > 題目詳情
13.如圖,在正方體ABCD-A1B1C1D1中,E、F分別為棱AD,AB的中點.
(1)求證:EF∥平面CB1D1;
(2)求CB1與平面CAA1C1所成角的正弦值.

分析 (1)連結BD,由EF∥BD,B1D1∥BD,得EF∥B1D1,由此能證明EF∥平面CB1D1
(2)設A1C1∩B1D1=O,連結CO,由已知推導出∠B1CO是CB1與平面CAA1C1所成角,由此能求出CB1與平面CAA1C1所成角的大小.

解答 證明:(1)連結BD,
∵在正方體ABCD-A1B1C1D1中,E,F分別為棱AD,AB的中點,
∴EF∥BD,B1D1∥BD,∴EF∥B1D1,
∵EF?平面CB1D1,B1D1?平面CB1D1
∴EF∥平面CB1D1
解:(2)設A1C1∩B1D1=O,連結CO,
∵正方體ABCD-A1B1C1D1中,A1B1C1D1是正方形,
∴A1C1⊥B1D1,AA1⊥B1D1
∵A1C1∩AA1=A1,∴B1O⊥平面CAA1C1,
∴∠B1CO是CB1與平面CAA1C1所成角,
∵OB1=$\frac{1}{2}$CB1,
∴sin∠B1CO=OB1:CB1=$\frac{1}{2}$,
∴CB1與平面CAA1C1所成角的正弦值為$\frac{1}{2}$.

點評 本題考查線面平行的證明,考查直線與平面所成角的大小的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

14.設向量$\overrightarrow a$,$\overrightarrow b$滿足$|\overrightarrow a|=1$,$|\overrightarrow a+\overrightarrow b|=\sqrt{3}$,$\overrightarrow a•(\overrightarrow a+\overrightarrow b)=0$,則$|2\overrightarrow a-\overrightarrow b|$=(  )
A.2B.$2\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.如圖,過拋物線C:x2=2py(p>0)的焦點F作直線l與拋物線相交于A,B兩點.直線l1∥l,且與拋物線C相切于點P,直線PF交拋物線于另一點Q.已知拋物線C上縱坐標為$\frac{3p}{2}$的點M到焦點F的距離為2.
(1)求拋物線C的方程;
(2)求△ABQ的面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.如圖,曲線C由上半橢圓C1:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0,y≥0)和部分拋物線C2:y=-x2+1(y≤0)連接而成,C1、C2的公共點為A,B,其中C1的離心率為$\frac{\sqrt{3}}{2}$.
(1)求a,b的值;
(2)過點B的直線l與C1,C2分別交于P,Q(均異于點A,B),若AP⊥AQ,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知圓錐的底面直徑和母線長都是$2\sqrt{3}$.
(1)求該圓錐的外接球的表面積;
(2)正方體的一面在該圓錐的底面上,其余四個頂點在圓錐的母線上,求該正方體的棱長.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.在梯形ABCD中,AD∥BC,∠ABC=90°,AB=a,AD=3a,且∠ADC=arcsin$\frac{{\sqrt{5}}}{5}$,PA⊥平面ABCD,PA=a,則二面角P-CD-A的大小為arctan$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知隨機變量ξ的分布列為:
ξ-101
P$\frac{1}{2}$$\frac{1}{8}$$\frac{3}{8}$
又變量η=4ξ+3,則η的期望是( 。
A.$\frac{7}{2}$B.$\frac{5}{2}$C.-1D.1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.一個口袋裝有5個紅球,3個白球,這些球除顏色外完全相同,某人一次從中摸出3個球,其中紅球的個數為X.
(1)求摸出的三個球中既有紅球又有白球的概率;
(2)求X的分布列及X的數學期望.(E(X)=x1p1+x2p2+…+xnpn

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為正方體,PD=CD=2,E、F分別是AB、PB的中點
(1)求證:EF⊥CD;
(2)求DB與平面DEF所成角的大;
(3)在平面PAD內求一點G,使GF⊥平面PCB,并證明你的結論.

查看答案和解析>>

同步練習冊答案