已知函數(shù)f(x)=2.
(1)求證:f(x)≤5,并說明等號成立的條件;
(2)若關于x的不等式f(x)≤|m-2|恒成立,求實數(shù)m的取值范圍.

(1)見解析,x=4時,等號成立(2)(-∞,-3]∪[7,+∞)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|-2≤x≤1}.
(1)求a的值,
(2)若≤k恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知a,b,c為實數(shù),且a+b+c+2-2m=0,a2+b2+c2+m-1=0.
(1)求證:a2+b2+c2.
(2)求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(1)求不等式的解集;
(2)若關于的不等式上無解,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).(Ⅰ)當時,解不等式;
(Ⅱ)當時,不等式的解集為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=|2x-1|+|2xa|,g(x)=x+3.
(1)當a=-2時,求不等式f(x)<g(x)的解集;
(2)設a>-1,且當x時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)選修4-5:不等式選講
已知關于的不等式:的整數(shù)解有且僅有一個值為2.
(1)求整數(shù)的值;(2)在(1)的條件下,解不等式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)和g(x)的圖象關于原點對稱,且f(x)=x2+2x.
(1)解關于x的不等式g(x)≥f(x)-|x-1|;
(2)如果對?x∈R,不等式g(x)+cf(x)-|x-1|恒成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設a,b,c均為正數(shù),且a+b+c=1,證明:
(Ⅰ)ab+bc+ac
(Ⅱ)

查看答案和解析>>

同步練習冊答案