分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)求得M,再由對數(shù)的運(yùn)算性質(zhì)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{x-y≤1}\end{array}\right.$作出可行域如圖:
聯(lián)立$\left\{\begin{array}{l}{y=2}\\{x-y=1}\end{array}\right.$,解得A(3,2),
化目標(biāo)函數(shù)z=2x+y為y=-2x+z,由圖可知,當(dāng)直線y=-2x+z過點A時,直線在y軸上的截距最大,
z有最大值M=8.
∴${2}^{lo{g}_{2}M}+lo{g}_{2}M={2}^{lo{g}_{2}8}+lo{g}_{2}8$=8+3=11.
故答案為:11.
點評 本題考查極大的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在$(-\frac{π}{4},\frac{π}{6})$單調(diào)遞增 | B. | f(x)在$(\frac{π}{4},\frac{3}{4}π)$單調(diào)遞增 | ||
C. | f(x)在$(-\frac{π}{4},\frac{π}{6})$單調(diào)遞減 | D. | f(x)在$(\frac{π}{4},\frac{3}{4}π)$單調(diào)遞減 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一解 | B. | 兩解 | C. | 無解 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期為π | |
B. | 函數(shù)f(x)圖象關(guān)于直線x=$\frac{π}{3}$對稱 | |
C. | 函數(shù)f(x)的圖象可由g(x)=2sin2x-1的圖象向右平移$\frac{π}{6}$個單位得到 | |
D. | 函數(shù)f(x)在區(qū)間$[0,\frac{π}{4}]$上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+$\sqrt{2}$ | B. | 2 | C. | 3-$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>1 | B. | b>1>a | C. | a>1>b | D. | 1>a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com