15.設(shè)x,y滿足不等式$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤1\end{array}$,若目標(biāo)函數(shù)z=2x+y的最大值為M,則式子2${\;}^{lo{g}_{2}M}$+log2M的值為11.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)求得M,再由對數(shù)的運(yùn)算性質(zhì)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{x-y≤1}\end{array}\right.$作出可行域如圖:

聯(lián)立$\left\{\begin{array}{l}{y=2}\\{x-y=1}\end{array}\right.$,解得A(3,2),
化目標(biāo)函數(shù)z=2x+y為y=-2x+z,由圖可知,當(dāng)直線y=-2x+z過點A時,直線在y軸上的截距最大,
z有最大值M=8.
∴${2}^{lo{g}_{2}M}+lo{g}_{2}M={2}^{lo{g}_{2}8}+lo{g}_{2}8$=8+3=11.
故答案為:11.

點評 本題考查極大的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)$f(x)=sin(ωx+ϕ)+cos(ωx+ϕ)(ω>0,|ϕ|<\frac{π}{2})$的最小正周期為π,且$f(x+\frac{π}{6})$是偶函數(shù),則( 。
A.f(x)在$(-\frac{π}{4},\frac{π}{6})$單調(diào)遞增B.f(x)在$(\frac{π}{4},\frac{3}{4}π)$單調(diào)遞增
C.f(x)在$(-\frac{π}{4},\frac{π}{6})$單調(diào)遞減D.f(x)在$(\frac{π}{4},\frac{3}{4}π)$單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,c=3$\sqrt{3}$,b=3,B=30°,此三角形的解的情況是(  )
A.一解B.兩解C.無解D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知隨機(jī)變量X~N(10,22),定義函數(shù)Φ(k)=P(X≤k),則Φ(12)-Φ(6)=0.8185.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=2sin(2x-$\frac{π}{6}$)-1,下面結(jié)論中錯誤的是(  )
A.函數(shù)f(x)的最小正周期為π
B.函數(shù)f(x)圖象關(guān)于直線x=$\frac{π}{3}$對稱
C.函數(shù)f(x)的圖象可由g(x)=2sin2x-1的圖象向右平移$\frac{π}{6}$個單位得到
D.函數(shù)f(x)在區(qū)間$[0,\frac{π}{4}]$上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,等腰直角△ABC中,AB=AC=1,在邊AB、AC上分別取D、E兩點,沿線段DE折疊,頂點A恰好落在邊BC上,則AD長度的最小值為$\sqrt{2}$-1..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知圓C1:x2+y2-2ax+a2-1=0和圓C2:x2+y2-2by+b2-4=0恰有三條公共切線,則$\sqrt{(a-3)^{2}+(b-4)^{2}}$的最小值為(  )
A.1+$\sqrt{2}$B.2C.3-$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若log6a=log7b,則a、b、1的大小關(guān)系可能是(  )
A.a>b>1B.b>1>aC.a>1>bD.1>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.橢圓C:$\frac{{x}^{2}}{9}$$+\frac{{y}^{2}}{16}$=1的兩個焦點分別為F1,F(xiàn)2,過F1的直線l交C于A,B兩點,若|AF2|+|BF2|=10,則|AB|的值為6.

查看答案和解析>>

同步練習(xí)冊答案