精英家教網 > 高中數學 > 題目詳情
已知直線l1過點B(0,-6)且與直線2x-3λy=0平行,直線l2經過定點A(0,6)且斜率為-
3
,直線l1與l2相交于點P,其中λ∈R,
(1)當λ=1時,求點P的坐標.
(2)試問:是否存在兩個定點E、F,使得|PE|+|PF|為定值,若存在,求出E、F的坐標,若不存在,說明理由.
分析:(1)當λ=1時,根據條件分別寫出兩直線的方程,聯立即可求得點P的坐標.
(2)由條件可得KPB×KPA=-
4
9
,由課本橢圓一節(jié)的例題可知,點P的軌跡是一個橢圓,求出其方程,再求出其焦點,即選為點E、F,則可滿足條件.
解答:解:(1)當λ=1時,直線2x-3λy=0即2x--3y=0,
∵l1與此直線平行,∴可設直線l1的方程為2x-3y+c=0,
又直線l1過點B(0,-6),將其代入得0-3×(-6)+c=0,解得c=-18.∴直線l1的方程為 2x-3y-18=0.
∵直線l2經過定點A(0,6)且斜率為-
3
,即-
2
3
,∴直線l2的方程為y-6=-
2
3
x
,即2x+3y-18=0.
聯立
2x-3y-18=0
2x+3y-18=0
 解得
x=9
y=0
.即點P(9,0).
(2)∵直線l1與直線2x-3λy=0平行,∴當λ≠0時,直線l1的斜率為
2
,
而直線l2斜率為-
3
,又
2
×(-
3
)=-
4
9

設點P(x,y),則KPB×KPA=-
4
9
,于是
y+6
x
×
y-6
x
=-
4
9
(x≠0),化為
x2
81
+
y2
36
=1
(x≠0).
當λ=0時,直線l1即為y軸,直線l2即為y=6,
∴二直線交于點(0,6),
∴點P的軌跡為橢圓
x2
81
+
y2
36
=1
(去掉點(0,-6)).
綜上可知:取點E(3
5
,0),F(-3
5
,0),則滿足|PE|+|PF|為定值.
點評:本題考查了直線與直線平行及相交以及橢圓的定義,理解和掌握以上知識與解題方法是解此題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知直線l1過點A(3,0),直線l2過點B(0,4),l1∥l2,用d表示l1到l2的距離,則(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l1過點A(-2,3),B(4,m),直線l2過點M(1,0),N(0,m-4),若l1⊥l2,則常數m的值是
1或6
1或6

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l1過點A(-1,1)和B(-2,-1),直線l2過點C(1,0)和D(0,a),若l1∥l2,則a的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知直線l1過點B(0,-6)且與直線2x-3λy=0平行,直線l2經過定點A(0,6)且斜率為數學公式,直線l1與l2相交于點P,其中λ∈R,
(1)當λ=1時,求點P的坐標.
(2)試問:是否存在兩個定點E、F,使得|PE|+|PF|為定值,若存在,求出E、F的坐標,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案