已知:tan(α+β)=2tanβ,求證:3sinα=sin(α+2β).
分析:此題用分析法證明即可.
解答:解:要證明3sinα=sin(α+2β),
只需證3sin(α+β-β)=sin(α+β+β),
展開(kāi)化為sin(α+β)cosβ=2cos(α+β)sinβ,
即只需證tan(α+β)=2tanβ,
而上式是已知的,顯然成立,因此原結(jié)論成立.
點(diǎn)評(píng):在用綜合法不易尋找解題思路時(shí)可以考慮使用分析法來(lái)證明.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:tanθ=
ba
,求證:acos2θ+bsin2θ=a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:tan(α+
π
4
)=-
1
2
,(
π
2
<α<π)

(1)求tanα的值;
(2)求
sin(α-
π
4
)
sin2α-2cos2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosθ-tanθ<0,那么角θ是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”(即平均數(shù)的倒數(shù))為
1
2n+1
,
(1)求{an}的通項(xiàng)公式;
(2)已知bn=tan(t>0),數(shù)列{bn}的前n項(xiàng)為Sn,求
lim
n→∞
Sn+1
Sn
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(α)=
tan(3π-α)•cos(4π-α)•sin(
π
2
+α)
cos(π+α)

(Ⅰ)化簡(jiǎn)f(α); 
(Ⅱ)若f(
π
2
-α)=-
3
5
,且α是第二象限角,求tanα.

查看答案和解析>>

同步練習(xí)冊(cè)答案