(本小題滿分12分)
已知橢圓

的中心在坐標(biāo)原點、對稱軸為坐標(biāo)軸,且拋物線

的焦點是它的一個焦點,又點

在該橢圓上.
(1)求橢圓

的方程;
(2)若斜率為

直線

與橢圓

交于不同的兩點

,當(dāng)

面積的最大值時,求直線

的方程.
(1)

; (2)

。
試題分析:(1)由已知拋物線的焦點為

,
故設(shè)橢圓方程為

………2分
將點

代入方程得

,整理得

,得

或

(舍)
故所求橢圓方程為

………5分
(2) 設(shè)直線

的方程為

,設(shè)

代入橢圓方程并化簡得

,
由

,可得

. (

)
由

, ………7分
故

. 又點

到

的距離為

, ………9分
故

, ………11分
當(dāng)且僅當(dāng)

,即

時取等號(滿足

式),

取得最大值

.
此時所求直線l的方程為

………12分
點評:中檔題,本題求橢圓的標(biāo)準(zhǔn)方程,運用的是“待定系數(shù)法”,注意明確焦點軸和p的值。研究直線與橢圓的位置關(guān)系,往往應(yīng)用韋達(dá)定理,通過“整體代換”,簡化解題過程,實現(xiàn)解題目的。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
C:

=1(a>b>0)的離心率為

,短軸一個端點到右焦點的距離為

.
(Ⅰ)求橢圓
C的方程;
(Ⅱ)設(shè)直線
l與橢圓
C交于
A、B兩點,坐標(biāo)原點
O到直線
l的距離為

,求△
AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線

的左右焦點分別為

,

為雙曲線的離心率,P是雙曲線右支上的點,

的內(nèi)切圓的圓心為I,過

作直線PI的垂線,垂足為B,則OB=
A.a(chǎn) | B.b | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線

上一定點

和兩動點

,當(dāng)

時,點

的橫坐標(biāo)的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,過點

作圓

的割線

與切線

,

為切點,連接

,

的平分線與

分別交于點

,若

,則
;

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
雙曲線

的漸近線方程為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
F1和
F2分別是雙曲線

的左、右焦點,P是雙曲線左支的一點,

,

,則該雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在拋物線y
2=2
px上,橫坐標(biāo)為4的點到焦點的距離為5,則
p的值為( )
A. | B.1 | C.4 | D.2 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
已知橢圓中心在原點,焦點在
x軸上,離心率

,過橢圓的右焦點且垂直于長軸的弦長為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線

與橢圓相交于

兩點,且坐標(biāo)原點

到直線

的距離為

,

的大小是否為定值?若是求出該定值,不是說明理由.
查看答案和解析>>