1.已知點P(3,-2),則點P到直線l:3x+4y-25=0的距離為$\frac{24}{5}$.

分析 利用點到直線的距離公式即可得出.

解答 解:點P到直線l:3x+4y-25=0的距離=$\frac{|3×3-2×4-25|}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{24}{5}$.
故答案為:$\frac{24}{5}$.

點評 本題考查了點到直線的距離公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}前n項和為Sn,且滿足a1=1,4Sn=anan+1+1.
(1)計算a2、a3、a4的值,并猜想{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$與橢圓${C_2}:\frac{x^2}{4}+{y^2}=1$有相同的離心率,且經(jīng)過點P(2,-1).
( I)求橢圓C1的標(biāo)準(zhǔn)方程;
( II)設(shè)點Q為橢圓C2的下頂點,過點P作兩條直線分別交橢圓C1于A、B兩點,若直線PQ平分∠APB,求證:直線AB的斜率為定值,并且求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.求值:25${\;}^{\frac{3}{2}}$=125;27${\;}^{\frac{2}{3}}$=9;($\frac{36}{49}$)${\;}^{\frac{3}{2}}$=$\frac{216}{343}$;($\frac{25}{4}$)${\;}^{-\frac{3}{2}}$=$\frac{8}{125}$;$\root{4}{8×\sqrt{{9}^{\frac{3}{2}}}}$=$\root{8}{1{2}^{3}}$;2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,點A(2,$\frac{π}{4}$).
(1)把極坐標(biāo)方程化為直角坐標(biāo)方程.
(2)求點A到直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知{an}為等比數(shù)列且滿足a6-a2=30,a3-a1=3,則數(shù)列{an}的前5項和S5=( 。
A.15B.31C.40D.121

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,三邊長為連續(xù)的正整數(shù),且最大角是最小角的2倍,則此三角形的三邊長為(  )
A.1,2,3B.2,3,4C.3,4,5D.4,5,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=|2x+$\frac{3}{a}$|+2|x-a|
(1)若a=3,求f(x)≥4的解集;
(2)對任意a∈(0,+∞),任意x∈R,f(x)≥m恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和為Sn,且an=2-2Sn(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=log3(1-Sn)(n∈N*),若$\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}=\frac{25}{51}$,求自然數(shù)n的值.

查看答案和解析>>

同步練習(xí)冊答案