A. | -2tanα | B. | 2tanα | C. | $\frac{-2}{tanα}$ | D. | $\frac{2}{tanα}$ |
分析 根據同角三角函數關系式和二倍角公式化簡后即可.
解答 解:∵α∈(-π,-$\frac{π}{2}$),第三象限,
∴$\sqrt{\frac{1+cosα}{1-cosα}}$<$\sqrt{\frac{1-cosα}{1+cosα}}$,
由$\sqrt{\frac{1+cosα}{1-cosα}}$-$\sqrt{\frac{1-cosα}{1+cosα}}$=$\frac{\sqrt{1+2co{s}^{2}\frac{α}{2}}-1}{\sqrt{1-(1-2si{n}^{2}\frac{α}{2})}}-\frac{\sqrt{1-(1-2si{n}^{2}\frac{α}{2})}}{\sqrt{1+2co{s}^{2}\frac{α}{2}}-1}$=$\frac{|cos\frac{α}{2}|}{|sin\frac{α}{2}|}-\frac{|sin\frac{α}{2}|}{|cos\frac{α}{2}|}$
=$\frac{co{s}^{2}\frac{α}{2}-si{n}^{2}\frac{α}{2}}{\frac{1}{2}×2|sin\frac{α}{2}cos\frac{α}{2}|}=\frac{2cosα}{|sinα|}$=$\frac{2}{|tanα|}$=$-\frac{2}{tanα}$.
故選C.
點評 本題主要考察了同角三角函數關系式和二倍角公式的應用,屬于基本知識的考查.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{12}{25}$ | B. | -$\frac{12}{25}$ | C. | -$\frac{7}{5}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 90° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,2) | B. | [1,2] | C. | (1,2] | D. | [1,2) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com