已知函數(shù)

   (1)當恒成立,求實數(shù)m的最大值;

   (2)在曲線上存在兩點關(guān)于直線對稱,求t的取值范圍;

   (3)在直線的兩條切線l1、l2,

求證:l1l2

(Ⅰ)m的最大值為4    (Ⅱ)


解析:

(1)直線y=x與曲線的交點可由

求得交點為(1,1)和(4,4),此時在區(qū)間[1,4]上圖象在直線y=x的下面,即恒成立,所以m的最大值為4。

(2)設(shè)曲線上關(guān)于直線y=x的對稱點為A()和B(),線段AB的中點M(),直線AB的方程為:

  (1分)

又因為AB中點在直線y=x上,所以

   9分

(3)設(shè)P的坐標為,過P的切線方程為:,則有

直線的兩根,

   14分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2011-2012學年湖南省益陽市高三第九次月考文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)

(1)當=時,求曲線在點(,)處的切線方程。

(2)  若函數(shù)在(1,)上是減函數(shù),求實數(shù)的取值范圍;

(3)是否存在實數(shù)若不存在,說明理由。若存在,求出的值,并加以證明。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省金華十校高三上學期期末考試文科數(shù)學(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(1)當a=1時,求函數(shù)在點(1,-2)處的切線方程;

(2)若函數(shù)上的圖象與直線總有兩個不同交點,求實數(shù)a的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三第一次模擬考試文科數(shù)學 題型:解答題

(本小題滿分14分)

已知函數(shù)

(1)當a=1時,求在區(qū)間[1,e]上的最大值和最小值;

(2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求a的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省高三第二次月考理科數(shù)學試卷 題型:解答題

已知函數(shù).

(1)當,時,試用含的式子表示,并討論的單調(diào)區(qū)間;

(2)若有零點,,且對函數(shù)定義域內(nèi)一切滿足的實數(shù).

①求的表達式;

②當時,求函數(shù)的圖象與函數(shù)的圖象的交點坐標

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆河北省高一上學期期中數(shù)學試卷 題型:解答題

已知函數(shù)

(1)當,且時,求證: 

(2)是否存在實數(shù),使得函數(shù)的定義域、值域都是?若存在,則求出的值,若不存在,請說明理由。

 

查看答案和解析>>

同步練習冊答案