C
分析:由函數(shù)解析式分析,所給的函數(shù)是一個復(fù)合函數(shù),要先求出外層函數(shù)的解析式以及內(nèi)層函數(shù)的值域,然后再根據(jù)二次函數(shù)的性質(zhì)求f(x)在定義域內(nèi)的最小值
解答:令t=x2+1≥1,則x2=t-1,由于f(x2+1)=x4+x2-6,故f(t)=t2-t-6,即f(x)=x2-x-6,x≥1,
由二次函數(shù)的性質(zhì)知f(x)=x2-x-6在[1,+∞)上是增函數(shù),
∴f(x)在定義域內(nèi)的最小值為f(1)=-6,
故選C
點評:本題考查函數(shù)的最值的求法,由于本題所給的解析式是一個復(fù)合函數(shù)的解析而研究的是外層函數(shù)的最小值故需要先求外層函數(shù),再研究其最小值.