分析:由函數(shù)f(x)是R上的奇函數(shù)且是增函數(shù)數(shù)列,f(0)=0,所以當(dāng)x>0,f(0)>0,當(dāng)x<0,f(0)<0.
再由a1+a5=2a3>0,所以f(a1)+f(a5)>0,f(a3)>0,由此知f(a1)+f(a3)+f(a5)恒為正數(shù).
解答:解:∵函數(shù)f(x)是R上的奇函數(shù)且是增函數(shù)數(shù)列,∴取任何x2>x1,總有f(x2)>f(x1).
∵函數(shù)f(x)是R上的奇函數(shù),∴f(0)=0,
∵函數(shù)f(x)是R上的奇函數(shù)且是增函數(shù),
∴當(dāng)x>0,f(0)>0,當(dāng)x<0,f(0)<0.
∵數(shù)列{an}是等差數(shù)列,a1+a5=2a3,a3>0,∴a1+a5>0,
則f(a1)+f(a5)>0,∵f(a3)>0,
∴f(a1)+f(a3)+f(a5)恒為正數(shù),
故選A.
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì)和應(yīng)用,是中檔題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地運(yùn)用函數(shù)的性質(zhì)進(jìn)行解題,屬于中檔題.