已知x∈(0,1],f(x)=
1
0
(1-2x+2t)dt
,則f(x)的值域是
[0,2)
[0,2)
分析:利用微積分基本定理先求出函數(shù)f(x)的解析式,再利用一次函數(shù)的單調(diào)性即可求出其值域.
解答:解:∵f(x)=
1
0
(1-2x+2t)dt
=[(1-2x)t+t2]
|
1
0
=2-2x,即f(x)=-2x+2.
∵x∈(0,1],∴f(1)≤f(x)<f(0),即0≤f(x)<2.
∴函數(shù)f(x)的值域是[0,2).
故答案為[0,2).
點(diǎn)評(píng):熟練微積分基本定理和一次函數(shù)的單調(diào)性是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、設(shè)函數(shù)f(x)是以2為周期的奇函數(shù),已知x∈(0,1),f(x)=2x,則f(x)在(1,2)上是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上以2為周期的偶函數(shù),已知x∈(0,1)時(shí),f(x)=log
1
2
(1-x),則函數(shù)f(x)在(1,2)上( 。
A、是減函數(shù),且f(x)>0
B、是增函數(shù),且f(x)>0
C、是增函數(shù),且f(x)<0
D、是減函數(shù),且f(x)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x∈(0,1],f(x)=
x
0
(1-2x+2t)dt
,則f(x)的值域是
[0,
1
4
]
[0,
1
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•奉賢區(qū)二模)設(shè)f(x)是定義在R上以2為周期的偶函數(shù),已知x∈(0,1),f(x)=log
1
2
(1-x)
,則函數(shù)f(x)在(1,2)上的解析式是
y=log
1
2
(x-1)
y=log
1
2
(x-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案