【題目】已知f(x)=(x2﹣3)ex(其中x∈R,e是自然對數(shù)的底數(shù)),當(dāng)t1>0時,關(guān)于x的方程[f(x)﹣t1][f(x)﹣t2]=0恰好有5個實(shí)數(shù)根,則實(shí)數(shù)t2的取值范圍是(
A.(﹣2e,0)
B.(﹣2e,0]
C.[﹣2e,6e3]
D.(﹣2e,6e3

【答案】D
【解析】解:f(x)=(x2﹣3)ex的導(dǎo)數(shù)為 f′(x)=(x2+2x﹣3)ex=(x﹣1)(x+3)ex ,
當(dāng)﹣3<x<1時,f′(x)<0,f(x)遞減;
當(dāng)x>1或x<﹣3時,f′(x)>0,f(x)遞增.
可得f(x)的極小值為f(1)=﹣2e,極大值為f(﹣3)=6e3 ,
作出y=f(x)的圖象,如圖:
當(dāng)t1>0時,關(guān)于x的方程[f(x)﹣t1][f(x)﹣t2]=0
恰好有5個實(shí)數(shù)根,
即為f(x)=t1或f(x)=t2恰好有5個實(shí)數(shù)根,
若t1>6e3 , f(x)=t1只有一個實(shí)根,不合題意;
若0<t1<6e3 , f(x)=t1有三個實(shí)根,只要﹣2e<t2≤0,滿足題意;
若t1=6e3 , f(x)=t1有兩個實(shí)根,只要0<t2<6e3 , 滿足題意;
綜上可得,t2的范圍是(﹣2e,6e3).
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三棱柱ABC﹣A1B1C1中,AB=1,BB1=2,求:
(1)異面直線B1C1與A1C所成角的大小;
(2)四棱錐A1﹣B1BCC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2 sinxcosx+2cos2x﹣1,在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且f(B)=1.
(1)求B;
(2)若 =3,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個實(shí)例,若輸入n,x的值分別為4,3,則輸出v的值為(
A.20
B.61
C.183
D.548

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2﹣ax+lnx,a∈R.
(1)當(dāng)a=3時,求函數(shù)f(x)的極小值;
(2)令g(x)=x2﹣f(x),是否存在實(shí)數(shù)a,當(dāng)x∈[1,e](e是自然對數(shù)的底數(shù))時,函數(shù)g(x)取得最小值為1.若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為F1 , F2 , 上頂點(diǎn)為B,若△BF1F2的周長為6,且點(diǎn)F1到直線BF2的距離為b. (Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A1 , A2是橢圓C長軸的兩個端點(diǎn),點(diǎn)P是橢圓C上不同于A1 , A2的任意一點(diǎn),直線A1P交直線x=m于點(diǎn)M,若以MP為直徑的圓過點(diǎn)A2 , 求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是首項(xiàng)為1的單調(diào)遞增的等比數(shù)列,且滿足a3 , 成等差數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)若bn=log3(anan+1)(n∈N*),求數(shù)列{anbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請用相關(guān)系數(shù)加以說明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2017年我國生活垃圾無害化處理量.
參考數(shù)據(jù): =9.32, =40.17, =0.55, ≈2.646.
參考公式:相關(guān)系數(shù)r= 回歸方程 = + t 中斜率和截距的最小二乘估計公式分別為: = , =

查看答案和解析>>

同步練習(xí)冊答案