如圖所示,三棱柱ABCA1B1C1中,AA1⊥平面ABC,D、E分別為A1B1、AA1的中點,點F在棱AB上,且AF=AB.
(1)求證:EF∥平面BC1D;
(2)在棱AC上是否存在一個點G,使得平面EFG將三棱柱分割成的兩部分體積之比為1∶15,若存在,指出點G的位置;若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:解答題
如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點E在線段AC上,CE=4.如圖②所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連結(jié)AB,設(shè)點F是AB的中點.
圖①圖②
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線AC與平面BDG的交點,求三棱錐B-DEG的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,點E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC,設(shè)AD中點為P.
(1)當E為BC中點時,求證:CP∥平面ABEF;
(2)設(shè)BE=x,問當x為何值時,三棱錐ACDF的體積有最大值?并求出這個最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四面體ABCD中,△ABC與△DBC都是邊長為4的正三角形.
(1)求證:BC⊥AD;
(2)試問該四面體的體積是否存在最大值?若存在,求出這個最大值及此時棱長AD的大。蝗舨淮嬖,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
右圖為一簡單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)請畫出該幾何體的三視圖;
(2)求四棱錐BCEPD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點E在線段AD上,且CE∥AB.
(1)求證:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P-ABCD的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com