【題目】已知橢圓長軸的兩個端點分別為, 離心率.

1)求橢圓的標準方程;

2)作一條垂直于軸的直線,使之與橢圓在第一象限相交于點,在第四象限相交于點,若直線與直線相交于點,且直線的斜率大于,求直線的斜率的取值范圍.

【答案】1;(2.

【解析】

1)利用已知條件,求得,再由,求得的值,即可求解;

2)設,其中,,可得,求得直線的方程,聯(lián)立方程組,求得點的坐標,得出直線斜率,結合橢圓的范圍,即可求解斜率的取值范圍.

1)由題意知,橢圓長軸的兩個端點分別為,,可得,

又由,即,可得

又因為,

所以橢圓的標準方程為.

2)設,其中,,可得,

由斜率公式,可得,,

所以直線的方程為;直線的方程為,

聯(lián)立方程組,解得,即點,

所以,即,

又由,

,,則

所以,

因為,所以,則,

所以,即實數(shù)直線的斜率的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】市政府為了節(jié)約用水,調查了100位居民某年的月均用水量(單位:),頻數(shù)分布如下:

分組

頻數(shù)

4

8

15

22

25

14

6

4

2

(1)根據(jù)所給數(shù)據(jù)將頻率分布直圖補充完整(不必說明理由);

(2)根據(jù)頻率分布直方圖估計本市居民月均用水量的中位數(shù);

(3)根據(jù)頻率分布直方圖估計本市居民月均用水量的平均數(shù)(同一組數(shù)據(jù)由該組區(qū)間的中點值作為代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1x+my+1=0l2:(m-3x-2y+13-7m=0

1)若l1l2,求實數(shù)m的值;

2)若l1l2,求l1l2之間的距離d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直線x軸,y軸的交點分別為A,B,圓C以線段AB為直徑.

1)求圓C的標準方程;

2)若直線l過點且圓心Cl的距離為1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題:方程表示焦點在軸上的雙曲線:命題:若存在,使得成立.

1)如果命題是真命題,求實數(shù)的取值范圍;

2)如果為假命題,為真命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務區(qū)等場所提供的自行車單車共享服務,由于其依托互聯(lián)網(wǎng)+”,符合低碳出行的理念,已越來越多地引起了人們的關注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了50人就該城市共享單車的推行情況進行問卷調査,并將問卷中的這50人根據(jù)其滿意度評分值(百分制)按照分成5組,請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:

頻率分布表

組別

分組

頻數(shù)

頻率

1

8

0.16

2

3

20

0.40

4

0.08

5

2

合計

1)求的值;

2)若在滿意度評分值為的人中隨機抽取2人進行座談,求所抽取的2人中至少一人來自第5組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,是函數(shù)的圖象上任意兩點,若的中點,且的橫坐標為

1)求;

2)若,,求;

3)已知數(shù)列的通項公式),數(shù)列的前項和為,若不等式對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過點且與直線相切,圓心的軌跡為曲線.

1)求曲線的方程;

2)若是曲線上的兩個點且直線的外心,其中為坐標原點,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線經(jīng)過點.

1)求拋物線的方程及其準線方程;

2)設為原點,過拋物線的焦點作斜率不為0的直線交拋物線于兩點,,直線分別交直線,于點和點.求證:以為直徑的圓經(jīng)過軸上的兩個定點.

查看答案和解析>>

同步練習冊答案