已知拋物線y2=4x上一點到焦點的距離為5,這點的坐標為
(4,4)或(4,-4)
(4,4)或(4,-4)
分析:先設出該點的坐標,根據(jù)拋物線的定義可知該點到準線的距離與其到焦點的距離相等,進而利用點到直線的距離求得x的值,代入拋物線方程求得y值,即可得到所求點的坐標.
解答:解:∵拋物線方程為y2=4x,
∴焦點為F(1,0),準線為l:x=-1
設所求點坐標為P(x,y)
作PQ⊥l于Q
根據(jù)拋物線定義可知P到準線的距離等于P、Q的距離
即x+1=5,解之得x=4,
代入拋物線方程求得y=±4
故點P坐標為:(4,±4)
故答案為:(4,4)或(4,-4).
點評:本題主要考查了拋物線的簡單性質(zhì).在涉及焦點弦和關于焦點的問題時常用拋物線的定義來解決.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x的焦點為F,其準線與x軸交于點M,過M作斜率為k的直線與拋物線交于A、B兩點,弦AB的中點為P,AB的垂直平分線與x軸交于點E(x0,0).
(1)求k的取值范圍;
(2)求證:x0>3;
(3)△PEF能否成為以EF為底的等腰三角形?若能,求此k的值;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線
y
2
 
=4x
的焦點為F,過點A(4,4)作直線l:x=-1垂線,垂足為M,則∠MAF的平分線所在直線的方程為
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x,焦點為F,頂點為O,點P(m,n)在拋物線上移動,Q是OP的中點,M是FQ的中點.
(1)求點M的軌跡方程.
(2)求
nm+3
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x與直線2x+y-4=0相交于A、B兩點,拋物線的焦點為F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x,其焦點為F,P是拋物線上一點,定點A(6,3),則|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步練習冊答案