14.不等式x(1-2x)≤0的解集為{x|x≤0或x≥$\frac{1}{2}$}.

分析 把不等式化為x(2x-1)≥0,求出解集即可.

解答 解:不等式x(1-2x)≤0可化為x(2x-1)≥0,
解得x≤0或x≥$\frac{1}{2}$,
所以不等式的解集為{x|x≤0或x≥$\frac{1}{2}$}.
故答案為{x|x≤0或x≥$\frac{1}{2}$}.

點(diǎn)評(píng) 本題考查了一元二次不等式的解法與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知橢圓C1,拋物線C2焦點(diǎn)均在x軸上,C1的中心和C2頂點(diǎn)均為原點(diǎn)O,從每條曲線上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中,則C1的左焦點(diǎn)到C2的準(zhǔn)線之間的距離為(  )
x
 
3
 
-2
 
4
 
$\sqrt{2}$
 
y
 
$-2\sqrt{3}$
 
0
 
-4
 
$\frac{{\sqrt{2}}}{2}$
 
A.$\sqrt{2}-1$B.$\sqrt{3}-1$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知(0.81.2m<(1.20.8m,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,0)B.(0,1)∪(1,+∞)C.[0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知以$y=\frac{{\sqrt{6}}}{3}x$為一條漸近線的雙曲線C的右焦點(diǎn)為$F(\sqrt{5},0)$.
(1)求該雙曲線C的標(biāo)準(zhǔn)方程;
(2)若斜率為2的直線l在雙曲線C上截得的弦長(zhǎng)為$\sqrt{6}$,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程$\left\{\begin{array}{l}x=1+cosφ\(chéng)\ y=sinφ\(chéng)end{array}\right.(φ為參數(shù))$,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)直線l的極坐標(biāo)方程是l,射線$OM:θ=\frac{π}{3}$與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列各組函數(shù)中,表示同一函數(shù)的是(  )
A.y=x+1與y=$\frac{{x}^{2}+x}{x}$B.f(x)=$\frac{{x}^{2}}{(\sqrt{x})^{2}}$與g(x)=x
C.$f(x)=|x|與g(x)=\root{n}{x^n}$D.$f(x)=x與g(t)={log_a}{a^t}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.給出下列四個(gè)命題:
①“三個(gè)球全部放入兩個(gè)盒子,其中必有一個(gè)盒子有一個(gè)以上的球”是必然事件
②“當(dāng)x為某一實(shí)數(shù)時(shí)可使x2<0”是不可能事件
③“明天廣州要下雨”是必然事件
④“從100個(gè)燈泡中有5個(gè)次品,從中取出5個(gè),5個(gè)都是次品”是隨機(jī)事件,
其中正確命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)集合A={x|(x-1)(x-2)<0},集合B={x|1<x<3},則A∪B=( 。
A.{x|-3<x<3}B.{x|1<x<2}C.{x|-1<x<1}D.{x|1<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若x>0,則函數(shù)y=x+$\frac{1}{2x+1}$的最小值為$\sqrt{2}-\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案