定義在R上的函數(shù)f(x)滿足f(x)=f(x+2),當(dāng)x∈[3,5]時,f(x)=2-|x-4|,則( )
A.f(sin)<f(cos
B.f(sin1)>f(cos1)
C.f(cos)<f(sin
D.f(cos2)>f(sin2)
【答案】分析:先根據(jù)f(x)=f(x+2)求得函數(shù)的周期,進而可求函數(shù)在4<x≤5時的解析式,根據(jù)其單調(diào)性可判斷D正確.
解答:解:由f(x)=f(x+2)知T=2,
又∵x∈[3,5]時,f(x)=2-|x-4|,
可知當(dāng)3≤x≤4時,f(x)=-2+x.
當(dāng)4<x≤5時,f(x)=6-x.其圖如下,
故在(-1,0)上是增函數(shù),在(0,1)上是減函數(shù).
又由|cos2|<|sin2|,
∴f(cos2)>f(sin2).
故選D.
點評:本題主要考查了函數(shù)的周期性.解此類題?捎脭(shù)形結(jié)合的方式更直觀.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當(dāng)x∈(0,4)時,f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點的區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊答案