如圖,在矩形ABCD中,已知A(2,0)、C(-2,2),點(diǎn)P在BC邊上移動(dòng),線段OP的垂直平分線交y軸于點(diǎn)E,點(diǎn)M滿(mǎn)足

(1)求點(diǎn)M的軌跡方程;

(2)已知點(diǎn)F(0,),過(guò)點(diǎn)F的直線l交點(diǎn)M的軌跡于Q、R兩點(diǎn),且求實(shí)數(shù)的取值范圍.

 

解析:(1)依題意,設(shè)P(t,2)(-2≤t≤2),M(x,y).

當(dāng)t=0時(shí),點(diǎn)M與點(diǎn)E重合,則M=(0,1),

當(dāng)t≠0時(shí),線段OP的垂直平分線方程為: 

 

  顯然,點(diǎn)(0,1)適合上式 .故點(diǎn)M的軌跡方程為x2=-4(y-1)( -2≤x≤2)

(2)設(shè)得x2+4k-2=0.

  設(shè)Q(x1,y1)、R(x2,y2),則

,.消去x2,得.

解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=2BC,P,Q分別為線段AB,CD的中點(diǎn),EP⊥平面ABCD.
(1) 求證:AQ∥平面CEP;
(2) 求證:平面AEQ⊥平面DEP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,已知AB=2AD=4,E為AB的中點(diǎn),現(xiàn)將△AED沿DE折起,使點(diǎn)A到點(diǎn)P處,滿(mǎn)足PB=PC,設(shè)M、H分別為PC、DE的中點(diǎn).
(1)求證:BM∥平面PDE;
(2)線段BC上是否存在一點(diǎn)N,使BC⊥平面PHN?試證明你的結(jié)論;
(3)求△PBC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AB=3
3
,BC=3,沿對(duì)角線BD將BCD折起,使點(diǎn)C移到點(diǎn)C′,且C′在平面ABD的射影O恰好在AB上
(1)求證:BC′⊥面ADC′;
(2)求二面角A-BC′-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,已知AB=3,AD=1,E、F分別是AB的兩個(gè)三等分點(diǎn),AC,DF相交于點(diǎn)G,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系:
(1)若動(dòng)點(diǎn)M到D點(diǎn)距離等于它到C點(diǎn)距離的兩倍,求動(dòng)點(diǎn)M的軌跡圍成區(qū)域的面積;
(2)證明:E G⊥D F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AB=
12
BC,E為AD的中點(diǎn),將△ABE沿BE折起,使平面ABE⊥平面BCDE.
(1)求證:CE⊥AB;
(2)在線段BC上找一點(diǎn)F,使DF∥平面ABE.

查看答案和解析>>

同步練習(xí)冊(cè)答案