已知拋物線y2=2px(p>0),過(guò)其焦點(diǎn)且斜率為-1的直線交拋物線于A,B兩點(diǎn),若線段AB的中點(diǎn)的橫坐標(biāo)為3,則該拋物線的準(zhǔn)線方程為( 。
A、x=lB、x=2C、x=-1D、x=-2
分析:設(shè)A(x1,y1),B(x2,y2).由于直線過(guò)其焦點(diǎn)且斜率為-1,可得方程為y=-(x-
p
2
)
.與拋物線的方程聯(lián)立,化為關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系和中點(diǎn)坐標(biāo)公式可得P,即可得到拋物線的準(zhǔn)線方程.
解答:解:設(shè)A(x1,y1),B(x2,y2).
由于直線過(guò)其焦點(diǎn)且斜率為-1,可得方程為y=-(x-
p
2
)

聯(lián)立
y=-(x-
p
2
)
y2=2px
,
化為x2-3px+
p2
4
=0
,
∴x1+x2=3p=2×3,
解得p=2.
∴拋物線的準(zhǔn)線方程為x=-1.
故選:C.
點(diǎn)評(píng):本題考查了拋物線的標(biāo)準(zhǔn)方程及其性質(zhì)、根與系數(shù)的關(guān)系和中點(diǎn)坐標(biāo)公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l.
(1)求拋物線上任意一點(diǎn)Q到定點(diǎn)N(2p,0)的最近距離;
(2)過(guò)點(diǎn)F作一直線與拋物線相交于A,B兩點(diǎn),并在準(zhǔn)線l上任取一點(diǎn)M,當(dāng)M不在x軸上時(shí),證明:
kMA+kMBkMF
是一個(gè)定值,并求出這個(gè)值.(其中kMA,kMB,kMF分別表示直線MA,MB,MF的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•聊城一模)已知拋物線y2=2px(p>0),過(guò)點(diǎn)M(2p,0)的直線與拋物線相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0),M(2p,0),A、B是拋物線上的兩點(diǎn).求證:直線AB經(jīng)過(guò)點(diǎn)M的充要條件是OA⊥OB,其中O是坐標(biāo)原點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案