數(shù)列{an}的前n項(xiàng)和為Sn(n∈N+),點(diǎn)(an,Sn)在直線(xiàn)y=2x-3n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{an}中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,請(qǐng)求出一組適合條件的項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

解:(1)由題意,∵數(shù)列{an}的前n項(xiàng)和為Sn(n∈N+),點(diǎn)(an,Sn)在直線(xiàn)y=2x-3n.
∴Sn=2an-3n①,Sn+1=2an+1-3(n+1)②
②-①化簡(jiǎn)可得an+1=2an+3,…(3分)
∴an+1+3=2(an+3)
∴數(shù)列{an+3}是公比為2的等比數(shù)列
∵a1=S1=2a1-3,∴a1=3
∴a1+3=3+3=6

…(6分)
(2)設(shè)存在s,p,r∈N+且s<p<r,使as,ap,ar成等差數(shù)列,…(7分)
∴2ap=as+ar,即 2(3×2p-3)=(3×2s-3)+(3×2r-3)
∴2p+1=2s+2r
∴2p-s+1=2r-s+1 (*) …(10分)
∵s、p、r∈N+且s<p<r
∴2p-s+1、2r-s為偶數(shù)
∵1+2r-s為奇數(shù),(*)式產(chǎn)生矛盾.所以這樣的三項(xiàng)不存在.…(13分)
分析:(1)根據(jù)數(shù)列{an}的前n項(xiàng)和為Sn(n∈N+),點(diǎn)(an,Sn)在直線(xiàn)y=2x-3n,可得Sn=2an-3n,再寫(xiě)一式,兩式相減,整理可得數(shù)列{an+3}是公比為2的等比數(shù)列,從而可求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)存在s,p,r∈N+且s<p<r,使as,ap,ar成等差數(shù)列,可得出2p-s+1=2r-s+1,利用2p-s+1、2r-s為偶數(shù),而1+2r-s為奇數(shù),即可得出結(jié)論.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng),考查數(shù)列與汗水的關(guān)系,考查構(gòu)造法求等比數(shù)列,考查存在性問(wèn)題的探究,有綜合性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項(xiàng)的和,Tn表示數(shù)列{an}的前n項(xiàng)的乘積,Tn(k)表示{an}的前n項(xiàng)中除去第k項(xiàng)后剩余的n-1項(xiàng)的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數(shù)列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項(xiàng)的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的通項(xiàng)an=
1
pn-q
,實(shí)數(shù)p,q滿(mǎn)足p>q>0且p>1,sn為數(shù)列{an}的前n項(xiàng)和.
(1)求證:當(dāng)n≥2時(shí),pan<an-1;
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)
;
(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn是數(shù)列{an}的前n項(xiàng)和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(1)求證:{an}是等差數(shù)列;
(2)若數(shù)列{bn}滿(mǎn)足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項(xiàng)公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•商丘二模)數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:
1
2
1
3
,
2
3
1
4
,
2
4
3
4
,
1
5
,
2
5
,
3
5
,
4
5
…,
1
n
,
2
n
,…,
n-1
n
,…有如下運(yùn)算和結(jié)論:
①a24=
3
8

②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項(xiàng)和為T(mén)n=
n2+n
4
;
④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結(jié)論是
①③④
①③④
.(將你認(rèn)為正確的結(jié)論序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①若數(shù)列{an}的前n項(xiàng)和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿(mǎn)足條件的△ABC有兩解;
③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
④設(shè)直線(xiàn)系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線(xiàn)所能?chē)傻恼切蚊娣e都相等.
其中真命題的序號(hào)是

查看答案和解析>>

同步練習(xí)冊(cè)答案