已知數(shù)列{an}與{bn}有如下關系:a1=2,an+1=
1
2
an,bn=
an+1
an-1
則數(shù)列{bn}的通項公式為
 
分析:根據(jù)遞推公式,an+1=
1
2
an
,得出an的通項公式,再根據(jù)bn=
an+1
an-1
,得出的遞推公式,即可數(shù)列{bn}的通項公式.
解答:解:根據(jù)遞推公式,an+1=
1
2
an
,得出an=(
1
2
)
n-1
 •2
,
bn=
an+1
an-1
=
1+2n-2
1-2n-2
,
故答案為bn=
an+1
an-1
=
1+2n-2
1-2n-2
點評:此題主要考查數(shù)列通項公式的求解及根據(jù)數(shù)列間的關系求解數(shù)列通項公式的方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}與{bn}的前n項和分別是Sn和Tn,已知S100=41,T100=49,記Cn=anTn+bnSn-anbn(n∈N*),那么數(shù)列{Cn}的前100項和
100i=1
Ci
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}與{bn}滿足bn+1an+bnan+1=(-2)n+1,bn=
3+(-1)n-1
2
,n∈N*,且a1=2.
(Ⅰ)求a2,a3的值
(Ⅱ)設cn=a2n+1-a2n-1,n∈N*,證明{cn}是等比數(shù)列
(Ⅲ)設Sn為{an}的前n項和,證明
S1
a1
+
S2
a2
+…+
S2n-1
a2n-1
+
S2n
a2n
≤n-
1
3
(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}與{bn}滿足:bnan+an+1+bn+1an+2=0,bn=
3+(-1)n
2
,n∈N*,且a1=2,a2=4.
(Ⅰ)求a3,a4,a5的值;
(Ⅱ)設cn=a2n-1+a2n+1,n∈N*,證明:{cn}是等比數(shù)列;
(Ⅲ)設Sk=a2+a4+…+a2k,k∈N*,證明:
4n
k=1
Sk
ak
7
6
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}與{bn}有如下關系:a1=2,an+1=
1
2
(an+
1
an
),bn=
an+1
an-1

(1)求數(shù)列{bn}的通項公式.
(2)設Sn是數(shù)列{an}的前n項和,當n≥2時,求證:Sn<n+
4
3

查看答案和解析>>

同步練習冊答案