在平面直角坐標(biāo)系中,橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn),對(duì)任意自然數(shù)n,連接原點(diǎn)O與點(diǎn)An(n,n+3),若用f(n)表示線段OAn上除端點(diǎn)外的整點(diǎn)個(gè)數(shù),則f(1)+f(2)+…+f(2010)=
 
分析:因?yàn)榫段OAn斜率k=
n+3
n
=1+
3
n
,方程為y=x+
3x
n
,所以n為3的倍數(shù),才能找出比n小的整數(shù)x,使得y也為整數(shù).由此入手能夠求出f(1)+f(2)+…+f(2010)的值.
解答:解:∵線段OAn斜率k=
n+3
n
=1+
3
n
,方程為y=x+
3x
n

∴n為3的倍數(shù),才能找出比n小的整數(shù)x,使得y也為整數(shù).
∴當(dāng)n=3,6,9,12,…,2010時(shí),線段OAn上有除端點(diǎn)外的2個(gè)整點(diǎn).
數(shù)列3,6,9,12,…,2010是首項(xiàng)為3,公差為3的等差數(shù)列,其通項(xiàng)公式為am=3m.
由3m=2010知m=670,∴f(1)+f(2)+…+f(2010)=2×670=1340.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,挖掘題設(shè)條件中的隱含條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號(hào)).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn)
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn)
③直線l經(jīng)過無窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過兩個(gè)不同的整點(diǎn)
④直線y=kx+b經(jīng)過無窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案