(Ⅱ)設{an}{bn}是公比不相等的兩個等比數列,cn=an+bn,證明數列{cn}不是等比數列.
20.本小題主要考查等比數列的概念和基本性質,推理和運算能力.
解:
(Ⅰ)因為{cn+1-pcn}是等比數列,故有(cn+1-pcn)2=(cn+2-pcn+1)(cn-pcn-1),
將cn=2n+3n代入上式,得
[2n+1+3n+1-p(2n+3n)]2
=[2n+2+3n+2-p(2n+1+3n+1)]·[2n+3n-p(2n-1+3n-1)],
即。郏2-p)2n+(3-p)3n]2
=[(2-p)2n+1+(3-p)3n+1][(2-p)2n-1+(3-p)3n-1],
整理得 (2-p)(3-p)·2n·3n=0,
解得 p=2或p=3.
(Ⅱ)設{an}、{bn}的公比分別為p、q,p≠q,
cn=an+bn.
為證{cn}不是等比數列只需證c≠c1·c3.
事實上, c=(a1p+b1q)2=ap2+bq2+2a1b1pq,
c1·c3=(a1+b1)(a1p2+b1q2)=ap2+bq2+a1b1(p2+q2).
由于p≠q,p2+q2>2pq,又a1、b1不為零,
因此c≠c1·c3,故{cn}不是等比數列.
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
an | 3n |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com