2.函數(shù)$y=3sin(\frac{π}{4}-3x)$的最小正周期為( 。
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.8D.4

分析 利用誘導公式以及y=Asin(ωx+φ)的周期等于$\frac{2π}{ω}$ω,得出結論.

解答 解:函數(shù)$y=3sin(\frac{π}{4}-3x)$=-3sin(3x-$\frac{π}{4}$)的最小正周期為$\frac{2π}{3}$,
故選:A.

點評 本題主要考查誘導公式、三角函數(shù)的周期性及其求法,利用了y=Asin(ωx+φ)的周期等于$\frac{2π}{ω}$ω,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.圓x2+y2+2x-4y+1=0關于直線ax+y+1=0對稱,則a=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.計算:(1)${(\frac{3}{2})^{-2}}-{(-4.5)^0}-{(\frac{8}{27})^{\frac{2}{3}}}$;
(2)$\frac{2}{3}$lg8+lg25-${3^{2{{log}_3}5}}$+${16^{\frac{3}{4}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)f(x)=${({\frac{1}{4}})^x}-{({\frac{1}{2}})^x}$+1在[-3,2]的最大值是57.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.對于兩個定義域相同的函數(shù)f(x)、g(x),若存在實數(shù)m,n,使h(x)=mf(x)+ng(x),則稱函數(shù)f(x)是由“基函數(shù)f(x),g(x)”生成的.
(1)若f(x)=x2+3x和g(x)=3x+4生成一個偶函數(shù)h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求$\frac{a}$的取值范圍;
(3)利用“基函數(shù)f(x)=log4(4x+1),g(x)=x-1)”生成一個函數(shù)h(x),使得h(x)滿足:
①是偶函數(shù),②有最小值1,求h(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設A={4,5,6,8},B={3,5,7,8},則A∪B=( 。
A.A∪B={5,8}B.A∪B={3,4,5,6,7,8}C.A∪B={4,6}D.A∪B={4,5,8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知等差數(shù)列{an}中,a3+a5=10,{an}的前n項和為Sn,S5=15.
(1)求數(shù)列{an}的通項公式an
(2)設${b_n}={({\frac{1}{2}})^n}•{a_n}$,求數(shù)列{bn}的前n和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知a=2,集合M={x∈R|x≤3},則( 。
A.a⊆MB.a∈MC.{a}∈MD.{a|a=2}∈M

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.如圖,若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角的大小為120°.

查看答案和解析>>

同步練習冊答案