16.已知f(x)=lnx-x+1+a,g(x)=x2ex(e為自然對數(shù)的底數(shù)),若對任意的x1∈[$\frac{1}{e}$,1],總存在x2∈[0,1],使得f(x1)=g(x2)成立,則實數(shù)a的取值范圍是$\frac{1}{e}$≤a≤e.

分析 求函數(shù)的導數(shù),利用導數(shù)研究函數(shù)的單調(diào)性和最值,建立條件關(guān)系進行求解即可.

解答 解:設(shè)f(x)=lnx-x+1+a,當x∈[$\frac{1}{e}$,1]時,f′(x)=$\frac{1-x}{x}$>0,f(x)是增函數(shù),
∴x∈[$\frac{1}{e}$,1]時,f(x)∈[a-$\frac{1}{e}$,a],
∵對任意的x1∈[$\frac{1}{e}$,1],總存在x2∈[0,1],使得lnx-x+1+a=x2ex成立,
∴[a-$\frac{1}{e}$,a]是g(x)的不含極值點的單值區(qū)間的子集,
∵g′(x)=x(2+x)ex,∴x∈(0,1],g′(x)>0,g(x)=x2ex是增函數(shù),
∴g(x)⊆[0,e]
∴[a-$\frac{1}{e}$,a]⊆[0,e],
∴$\frac{1}{e}$≤a≤e;
故答案為$\frac{1}{e}$≤a≤e.

點評 本題主要考查方程恒成立問題,構(gòu)造函數(shù),求函數(shù)的導數(shù),利用導數(shù)研究函數(shù)的單調(diào)性和取值范圍是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖是某幾何體的三視圖,則該幾何體的體積為(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{8\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.為了調(diào)查黃山市某校高中學生是否愿意在寒假期間參加志愿者活動,用簡單隨機抽樣方法從該校調(diào)查了80人,結(jié)果如下:
是否愿意提供志愿者服務
性別
愿意不愿意
男生3010
女生2020
(1)若用分層抽樣的方法在愿意參加志愿者活動的學生抽取5人,則應女生中抽取多少人?
(2)在(1)中抽取出的5人中任選2人,求“被選中的恰好是一男一女”的概率.
 P(K2≥k0 0.025 0.010
 k0 5.024 6.635
注:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知圓C1:x2+y2-6x+5=0,拋物線C2:y2=x,過點M(m,0)的直線l與圓C1交于 A,B兩點,與C2相交于C,D兩點.
(1)若m=0,當直線l 繞點M 旋轉(zhuǎn)變化時,求線段 AB 中點R的軌跡方程;
(2)當m=2且$\overrightarrow{AC}=\overrightarrow{DB}$時,求直線l 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=sin(3x+$\frac{π}{4}$)的圖象適當變換就可以得到y(tǒng)=cos3x的圖象,這種變換可以是( 。
A.向右平移$\frac{π}{4}$個單位長度B.向右平移$\frac{π}{12}$個單位長度
C.向左平移$\frac{π}{4}$個單位長度D.向左平移$\frac{π}{12}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,AD=3BC,現(xiàn)將等腰梯形ABCD沿OB折起如圖乙所示的四棱錐P-OBCD,且PC=$\sqrt{3}$,點E是線段OP的中點.

(1)證明:OP⊥CD;
(2)在圖中作出平面CDE與PB交點Q,并求線段QD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知三棱臺ABC-A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求證:BC1⊥平面AA1C1C
(2)點D是B1C1的中點,求二面角A1-BD-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx+mx(m為常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當$m≤-\frac{{3\sqrt{2}}}{2}$時,設(shè)$g(x)=f(x)+\frac{1}{2}{x^2}$的兩個極值點x1,x2(x1<x2)恰為h(x)=2lnx-ax-x2的零點,求$y=({x_1}-{x_2})h'(\frac{{{x_1}+{x_2}}}{2})$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖(1)所示,在直角梯形ABCD中,$AD∥BC,∠BAD=\frac{π}{2},AB=BC=\frac{1}{2}AD$,E是AD的中點,O是AC與BE的交點.將△ABE沿BE折起到△A1BE的位置,如圖(2)所示.

(1)證明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案