定義在R上的函數(shù)y=f(x)在(-∞,2)上是增函數(shù),且y=f(x+2)圖象的對(duì)稱軸是x=0,則( 。
A、f(-1)<f(3)B、f (0)>f(3)C、f (-1)=f (-3)D、f(2)<f(3)
分析:根據(jù)y=f(x+2)圖象的對(duì)稱軸是x=0,得到函數(shù)y=f(x)的對(duì)稱軸是x=2,然后利用函數(shù)的單調(diào)性和對(duì)稱性之間的關(guān)系即可得到結(jié)論.
解答:解:∵y=f(x+2)圖象的對(duì)稱軸是x=0,
∴將y=f(x+2)圖象向右平移2個(gè)單位得到y(tǒng)=f(x),
即y=f(x)的對(duì)稱軸是x=2,
∵函數(shù)y=f(x)在(-∞,2)上是增函數(shù),
∴函數(shù)y=f(x)在(2,+∞)上是減函數(shù).
∴f(-1)=f(5)<f(3)成立,
故選:A.
點(diǎn)評(píng):本題主要考查函數(shù)對(duì)稱性的應(yīng)用,利用對(duì)稱性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.綜合考查函數(shù)的性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、定義在R上的函數(shù)y=f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當(dāng)x∈[-1,1]時(shí),f(x)=x3,則f(2009)的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、定義在R上的函數(shù)y=f(x)滿足:f(x)=f(4-x),且f(x-2)+f(2-x)=0,則f(508)=
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)滿足f(3-x)=f(x),(x-
3
2
)f′(x)>0(x≠
3
2
)
,若x1<x2,且x1+x2>3,則有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題:
①“a>b”是“2a>2b”成立的充要條件;
②“a=b”是“l(fā)ga=lgb”成立的充分不必要條件;
③函數(shù)f(x)=ax2+bx(x∈R)為奇函數(shù)的充要條件是“a=0”
④定義在R上的函數(shù)y=f(x)是偶函數(shù)的必要條件是
f(-x)f(x)
=1”

其中真命題的序號(hào)是
①③
①③
.(把真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當(dāng)x∈[-1,1]時(shí),f(x)=x3,則f(2011)=
-1
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案