函數(shù)f1(x)=cosx-sinx,記f2(x)=f1′(x),f3(x)=f2′(x),…fn(x)=fn-1′(x),(n∈N*,n≥2),則f1(
π
12
)+f2(
π
12
)+…+f2007(
π
12
)
=( 。
A、
6
2
B、-
6
2
C、0
D、2008
分析:先求出f2(x)、f3(x)、f4(x),觀察所求的結果,歸納其中的周期性規(guī)律,求解即可.
解答:解:由題意,f2(x)=f1′(x)=-sinx-cosx
f3(x)=f2′(x)=-cosx+sinx,
f4(x)=(-cosx+sinx)′=sinx+cosx,
f5(x)=cosx-sinx,
以此類推,可得出fn(x)=fn+4(x)
又∵f1(x)+f2(x)+f3(x)+f4(x)=0,
f1(
π
12
)+f2(
π
12
)+…+f2007(
π
12
)
=f1(
π
12
)+f2(
π
12
)+f3(
π
12
)=-(sin
π
12
+cos 
π
12
)
=-
6
2

故選B.
點評:本題以三角函數(shù)為載體,考查三角函數(shù)的導數(shù)、周期性、及觀察歸納思想的運用,解題的關鍵是判斷出函數(shù)導數(shù)變化的周期性..
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

h(x)=x+
m
x
x∈[
1
4
,5]
,其中m是不等于零的常數(shù),
(1)(理)寫出h(4x)的定義域;
(文)m=1時,直接寫出h(x)的值域;
(2)(文、理)求h(x)的單調遞增區(qū)間;
(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函數(shù)f(x)在D上的最小值,maxf(x)|x∈D表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)當m=1時,設M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
(文)當m=1時,|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)(理)設6張卡片上分別寫有函數(shù)f1(x)=x、f2(x)=x2、f3(x)=x3、f4(x)=sinx、f5(x)=cosx和f6(x)=lg(|x|+1).
(Ⅰ)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個新函數(shù),求所得函數(shù)是奇函數(shù)
的概率;
(Ⅱ)現(xiàn)從盒子中進行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片,則停止抽取,否則繼續(xù)進行,求抽取次數(shù)ξ的分布列和數(shù)學期望.
(文)已知四棱錐P-ABCD的三視圖如下圖所示,E是側棱PC上的動點.
(Ⅰ) 求四棱錐P-ABCD的體積;
(Ⅱ) 是否不論點E在何位置,都有BD⊥AE?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•浦東新區(qū)一模)對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)

第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數(shù)t的取值范圍.
(3)設f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數(shù)h(x)圖象的最低點坐標為(2,8).若對于任意正實數(shù)x1,x2且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

函數(shù)f1(x)=cosx-sinx,記f2(x)=f1′(x),f3(x)=f2′(x),…fn(x)=fn-1′(x),(n∈N*,n≥2),則數(shù)學公式=


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    0
  4. D.
    2008

查看答案和解析>>

同步練習冊答案