考點:數(shù)列與函數(shù)的綜合,數(shù)列遞推式
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:利用指數(shù)函數(shù)的單調(diào)性,可以得出an+1=f(an)從第一項開始,函數(shù)值先增大后減小再增大,再減小,最后趨于平穩(wěn)值,奇數(shù)項的值慢慢變大趨于平穩(wěn)值,偶數(shù)項的值慢慢變小趨于平穩(wěn)值,所以偶數(shù)項總是大于奇數(shù)項的值,即可得出結(jié)論.
解答:
解:∵f(x)=ax(0<a<1),a1=f(1),
∴a1=a,
∵an+1=f(an),
∴a2=f(a1)=aa1=aa,
∵0<a<1,
∴a2>a1,
∵a3=aa2,
∴a2>a3,
同理可得a1<a3<…,a2>a4>…,
∴an+1=f(an)從第一項開始,函數(shù)值先增大后減小再增大,再減小,最后趨于平穩(wěn)值,奇數(shù)項的值慢慢變大趨于平穩(wěn)值,偶數(shù)項的值慢慢變小趨于平穩(wěn)值,所以偶數(shù)項總是大于奇數(shù)項的值,
∴a25<a30<a20.
故答案為:a2;a25<a30<a20.
點評:本題考查指數(shù)函數(shù)的單調(diào)性,考查數(shù)列與函數(shù)的綜合,考查學(xué)生分析解決問題的能力,屬于中檔題.