分析:由已知中函數(shù)f(x)=x2-5x+10,當x∈(n,n+1],n∈N+時,函數(shù)f(x)的值域為Dn,將Dn中整數(shù)的個數(shù)記為an,我們根據(jù)二次函數(shù)的圖象和性質(zhì),可以判斷出當n=1,n=2時,an的值,進而根據(jù)n≥3時,則當x∈(n,n+1]時,函數(shù)在(n,n+1]上為增函數(shù),可得當x∈(n,n+1]時,f(n2-5n+10)<f(x)≤f(n2-5n+10)+(2n-4)],進而得到答案.
解答:解:∵函數(shù)f(x)=x
2-5x+10的圖象是開口朝上,以x=
為對稱軸的拋物線,
當n=1時,即x∈(1,2],
f(2)≤f(x)<f(1),即4≤f(x)<6,此時a
1=2
當n=2時,即x∈(2,3],
f(
)≤f(x)≤f(3),即
≤f(x)≤4,此時a
2=1
當n≥3時,則當x∈(n,n+1]時,函數(shù)在(n,n+1]上為增函數(shù)
則f(n)<f(x)≤f(n+1),
即f(n
2-5n+10)<f(x)≤f[(n+1)
2-5(n+1)+10],
f(n
2-5n+10)<f(x)≤f[(n
2-5n+10)+(2n-4)],
∵n
2-5n+10<x≤(n
2-5n+10)+(2n-4),
其中滿足條件的整數(shù)共2n-4個
此時a
n=2n-4
故a
n=
故答案為:2,
點評:本題考查的知識點是二次函數(shù)在閉區(qū)間上的最值,等差數(shù)列的通項公式,其中熟練掌握二次函數(shù)的圖象和判斷,判斷出函數(shù)f(x)在區(qū)間(n,n+1]上的單調(diào)性,是解答本題的關(guān)鍵.