3.若tanα=-2,則sin2α+sinαcosα=$\frac{2}{5}$.

分析 由條件利用同角三角函數(shù)的基本關系,求得要求式子的值.

解答 解:∵tanα=-2,則sin2α+sinαcosα=$\frac{{sin}^{2}α+sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α+tanα}{{tan}^{2}α+1}$=$\frac{4-2}{4+1}$=$\frac{2}{5}$,
故答案為:$\frac{2}{5}$.

點評 本題主要考查同角三角函數(shù)的基本關系的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知關于x,y的方程C:x2+y2-2x-4y+m=0
(1)若方程C表示圓,求m的取值范圍;
(2)若圓C與圓x2+y2-8x-12y+36=0外切,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.$\frac{{\sqrt{3}tan10°+1}}{{({4{{cos}^2}10°-2})sin10°}}$=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.求值:
(1)sin795°;         
(2)(tan10°-$\sqrt{3}$)•$\frac{{sin{{80}°}}}{{cos{{40}°}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=sin(x+$\frac{π}{6}$),其中x∈[-$\frac{π}{3}$,a],若f(x)的值域是[-$\frac{1}{2}$,1],則cosα的取值范圍是( 。
A.$[\frac{1}{2},1)$B.$[{-1,\frac{1}{2}}]$C.$[{0,\frac{1}{2}}]$D.$[{-\frac{1}{2},0}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(cos15°,sin15°),$\overrightarrow$=(cos75°,sin75°),則|a-2b|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤0)}\\{-2x(x>0)}\end{array}\right.$,若f(x)=10,則x=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知奇函數(shù)f(x)在(0,+∞)上單調遞增,且f(2)=0,則不等式$\frac{f(-x)-f(x)}{2x}$≥0的解集為( 。
A.[-2,0)∪(0,2]B.[-2,0)∪[2,+∞)C.(-∞,2]∪(0,2]D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.同時擲兩枚骰子,所得點數(shù)之和為3的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{18}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

同步練習冊答案