已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=nan-2n(n-1),n∈N*
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)求數(shù)列{
1anan+1
}的前n項(xiàng)和Tn
分析:(I)由題意已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=nan-2n(n-1),已知前n項(xiàng)和求通項(xiàng);
(II)在(I)中求出數(shù)列an的通項(xiàng),利用裂項(xiàng)相消法求和即可.
解答:解:(I)n≥2時(shí),Sn=nan-2n(n-1),∴Sn-1=(n-1)an-1-2(n-1)(n-2),
∴an=nan-(n-1)an-1-4(n-1),則(n-1)an=(n-1)an-1+4(n-1),
∴an=an-1+4∴{an}是首項(xiàng)為1,公差為4的等差數(shù)列,∴an=4n-3;
(II)
1
anan+1
=
1
(4n-3)(4n+1)
=
1
4
(
1
4n-3
-
1
4n+1
)
,
Tn=
1
4
[(1-
1
5
)+(
1
5
-
1
9
)+…+(
1
4n-3
-
1
4n+1
)
]=
1
4
(1-
1
4n+1
)=
n
4n+1
點(diǎn)評(píng):此題考查了已知數(shù)列的前n項(xiàng)和求其通項(xiàng),還考查了裂項(xiàng)相消法求出數(shù)列的前n項(xiàng)的和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案