【題目】如圖,在四棱錐中,底面是正方形,且,平面 平面,,點為線段的中點,點是線段上的一個動點.
(Ⅰ)求證:平面 平面;
(Ⅱ)設二面角的平面角為,試判斷在線段上是否存在這樣的點,使得,若存在,求出的值;若不存在,請說明理由.
【答案】(Ⅰ)見證明;(Ⅱ)
【解析】
(Ⅰ)根據面面垂直的判定定理即可證明結論成立;
(Ⅱ)先證明,,兩兩垂直,再以為原點,以,,所在直線分別為軸,建立空間直角坐標系,設,用表示出平面的法向量,進而表示出,由,即可得出結果.
解:(Ⅰ) 四邊形是正方形,∴.
∵平面 平面平面平面,∴平面.
∵平面,∴.
∵,點為線段的中點,∴.
又∵,∴平面.
又∵平面,∴平面 平面.
(Ⅱ)由(Ⅰ)知平面,∵,∴平面.
在平面內過作交于點,
∴,故,,兩兩垂直,以為原點,
以,,所在直線分別為軸,建立如圖所示空間直角坐標系.
因為,,∴.
∵平面, 則,,
又為的中點,,
假設在線段上存在這樣的點,使得,設,,,
設平面的法向量為, 則
∴,令,則,則
平面,平面的一個法向量,,則
∴.
,解得,∴
科目:高中數學 來源: 題型:
【題目】甲乙兩名射擊運動員分別對一目標射擊一次,甲射中的概率為0.8,乙射中的概率為0.9,求:
(1)2人都射中目標的概率;
(2)2人中恰有1人射中目標的概率;
(3)2人至少有1人射中目標的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明;
(3)當a>1時,求使f(x)>0的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.某班位同學從文學、經濟和科技三類不同的圖書中任選一類,不同的結果共有種;
B.甲乙兩人獨立地解題,已知各人能解出的概率分別是,則題被解出的概率是;
C.某校名教師的職稱分布情況如下:高級占比,中級占比,初級占比,現(xiàn)從中抽取名教師做樣本,若采用分層抽樣方法,則高級教師應抽取人;
D.兩位男生和兩位女生隨機排成一列,則兩位女生不相鄰的概率是.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com