奇函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈(0,1)時,f(x)=2x-1,則f(
3
2
)
=( 。
A、-
2
B、
2
C、-
2
2
D、
2
2
分析:先利用函數(shù)的周期為2將求f(
3
2
)
轉(zhuǎn)化到區(qū)間(-1,0)內(nèi),再根據(jù)偶函數(shù)的定義和對數(shù)的運(yùn)算性質(zhì)求出f(
3
2
)
的值.
解答:解:∵函數(shù)f(x)是以2為周期的偶函數(shù),
f(
3
2
)
=f(-2+
3
2
)=f(-
1
2

=-f(
1
2

=-2
1
2
-1

=-
2
2

故選C.
點(diǎn)評:本題考查了函數(shù)奇偶性和周期性的應(yīng)用,根據(jù)周期性把自變量的范圍轉(zhuǎn)化到與題意有關(guān)的區(qū)間上,再由奇偶性聯(lián)系f(x)=f(-x),利用對數(shù)的運(yùn)算性質(zhì)求出函數(shù)值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶一模)定義域?yàn)镽的奇函數(shù)f(x)滿足f(x+1)=f(x-1),且當(dāng)x∈(0,1)時,f(x)=
2x-12x+1

(Ⅰ)求f(x) 在[-1,1]上的解析式;
(Ⅱ)當(dāng)m取何值時,方程f(x)=m在(0,1)上有解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且在[0,2]上遞增,記a=f(6),b=f(161),c=f(45),則a,b,c的大小關(guān)系為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x)滿足f(2-x)=f(x),f(1)=1,且f(x)在(0,1)上單調(diào),則方程f(x)=|lgx|的實(shí)根的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•菏澤二模)已知定義在R上的奇函數(shù)f(x)滿足f(x+2e)=-f(x)(其中e=2.7182…),且在區(qū)間[e,2e]上是減函數(shù).令a=
ln2
2
,
ln3
3
,c=
ln5
5
,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省菏澤市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

已知定義在R上的奇函數(shù)f(x)滿足f(x+2e)=-f(x)(其中e=2.7182…),且在區(qū)間[e,2e]上是減函數(shù).令a=,,c=,則( )
A.f(a)<f(b)<f(c)
B.f(b)<f(c)<f(a)
C.f(c)<f(a)<f(b)
D.f(c)<f(b)<f(a)

查看答案和解析>>

同步練習(xí)冊答案