【題目】從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖.
(Ⅰ)求a的值;
(Ⅱ)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,估計(jì)該市中學(xué)生中的全體男生的平均身高;
(Ⅲ)從該市的中學(xué)生中隨機(jī)抽取一名男生,根據(jù)直方圖中的信息,估計(jì)其身高在180cm 以上的概率.若從全市中學(xué)的男生(人數(shù)眾多)中隨機(jī)抽取3人,用X表示身高在180cm以上的男生人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望EX.

【答案】解:(Ⅰ)根據(jù)題意得:(0.005×2+a+0.020×2+0.040)×10=1.

解得 a=0.010.

(Ⅱ)設(shè)樣本中男生身高的平均值為 ,則

=(145+195)×0.05+155×0.1+(165+185)×0.2+175×0.4=17+15.5+70+70=172.5.

所以估計(jì)該市中學(xué)全體男生的平均身高為172.5cm.

(Ⅲ)從全市中學(xué)的男生中任意抽取一人,其身高在180cm以上的概率約為

由已知得,隨機(jī)變量X的可能取值為0,1,2,3.X~B ,

所以 ; ;

;

隨機(jī)變量X的分布列為

X

0

1

2

3

P

因?yàn)閄~B ,所以


【解析】(Ⅰ)根據(jù)題意得:(0.005×2+a+0.020×2+0.040)×10=1.解得 a.(Ⅱ)設(shè)樣本中男生身高的平均值為 ,可得 .(Ⅲ)從全市中學(xué)的男生中任意抽取一人,其身高在180cm以上的概率約為 .由已知得,隨機(jī)變量X的可能取值為0,1,2,3.X~B ,即可得出.
【考點(diǎn)精析】掌握頻率分布直方圖是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)和點(diǎn)都在橢圓上,直線交x軸于點(diǎn)M.
(1)(Ⅰ)求橢圓C的方程,并求點(diǎn)M的坐標(biāo)(用,表示);
(2)(Ⅱ)設(shè)為原點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,直線交X軸于點(diǎn)N.問:Y軸上是否存在點(diǎn)Q,使得?若存在,求點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1 =1(a>b>0)的離心率e= ,且過點(diǎn) ,直線l1:y=kx+m(m>0)與圓C2:(x﹣1)2+y2=1相切且與橢圓C1交于A,B兩點(diǎn). (Ⅰ)求橢圓C1的方程;
(Ⅱ)過原點(diǎn)O作l1的平行線l2交橢圓于C,D兩點(diǎn),設(shè)|AB|=λ|CD|,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙兩個(gè)容器,甲容器容量為x,裝滿純酒精,乙容器容量為z,其中裝有體積為y的水(x,y<z,單位:L).現(xiàn)將甲容器中的液體倒入乙容器中,直至甲容器中液體倒完或乙容器盛滿,攪拌使乙容器中兩種液體充分混合,再將乙容器中的液體倒入甲容器中直至倒?jié)M,攪拌使甲容器中液體充分混合,如此稱為一次操作,假設(shè)操作過程中溶液體積變化忽略不計(jì).設(shè)經(jīng)過n(n∈N*)次操作之后,乙容器中含有純酒精an(單位:L),下列關(guān)于數(shù),列{an}的說法正確的是(
A.當(dāng)x=y=a時(shí),數(shù)列{an}有最大值
B.設(shè)bn=an+1﹣an(n∈N*),則數(shù)列{bn}為遞減數(shù)列
C.對(duì)任意的n∈N* , 始終有
D.對(duì)任意的n∈N* , 都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(x﹣a)ex , a∈R. (Ⅰ)當(dāng)a=1時(shí),試求f(x)的單調(diào)增區(qū)間;
(Ⅱ)試求f(x)在[1,2]上的最大值;
(Ⅲ)當(dāng)a=1時(shí),求證:對(duì)于x∈[﹣5,+∞), 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】各項(xiàng)均為非負(fù)整數(shù)的數(shù)列{an}同時(shí)滿足下列條件: ①a1=m(m∈N*);②an≤n﹣1(n≥2);③n是a1+a2+…+an的因數(shù)(n≥1).
(Ⅰ)當(dāng)m=5時(shí),寫出數(shù)列{an}的前五項(xiàng);
(Ⅱ)若數(shù)列{an}的前三項(xiàng)互不相等,且n≥3時(shí),an為常數(shù),求m的值;
(Ⅲ)求證:對(duì)任意正整數(shù)m,存在正整數(shù)M,使得n≥M時(shí),an為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)奇函數(shù)上是增函數(shù),且,則不等式的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2= ,且直線l經(jīng)過曲線C的左焦點(diǎn)F. ( I )求直線l的普通方程;
(Ⅱ)設(shè)曲線C的內(nèi)接矩形的周長(zhǎng)為L(zhǎng),求L的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=2 cos( ﹣θ)
(1)求曲線C的直角坐標(biāo)方程;
(2)已知直線l過點(diǎn)P(1,0)且與曲線C交于A,B兩點(diǎn),若|PA|+|PB|= ,求直線l的傾斜角α.

查看答案和解析>>

同步練習(xí)冊(cè)答案