已知A(-6,0),B(6,0),點(diǎn)P在直線l:x-y+12=0上,若橢圓以A、B為焦點(diǎn),以|PA|+|PB|的最小值為長(zhǎng)軸長(zhǎng),求這個(gè)橢圓的方程.

解:設(shè)點(diǎn)A關(guān)于直線l:x-y+12=0的對(duì)稱(chēng)點(diǎn)為C,連接BC交直線l于P0,
根據(jù)平面幾何知識(shí)可得:當(dāng)動(dòng)點(diǎn)P與點(diǎn)P0重合時(shí),|PA|+|PB|取得最小值.
設(shè)C(m,n),則有,解之得
∴C的坐標(biāo)為(-12,6),得|PA|+|PB|取得最小值為|CB|==6
∵橢圓以A、B為焦點(diǎn),以|PA|+|PB|的最小值為長(zhǎng)軸長(zhǎng),
∴設(shè)橢圓的方程為(a>b>0),滿(mǎn)足,
解之得a=3,b=3,
∴滿(mǎn)足條件的橢圓方程是
分析:設(shè)點(diǎn)A關(guān)于直線l:x-y+12=0的對(duì)稱(chēng)點(diǎn)為C,連接BC交直線l于P0,根據(jù)平面幾何知識(shí)可得:當(dāng)動(dòng)點(diǎn)P與點(diǎn)P0重合時(shí),|PA|+|PB|取得最小值.然后根據(jù)直線AC的斜率等于-1和線段AC中點(diǎn)在直線l上,聯(lián)列方程組可解出C的坐標(biāo)為(-12,6),從而得到|PA|+|PB|取得最小值為|CB|=.最后設(shè)橢圓的方程為(a>b>0),根據(jù)橢圓的基本概念列出關(guān)于a、b的方程組,得到a=,b=,最終得出這個(gè)橢圓的方程.
點(diǎn)評(píng):本題以直線上一個(gè)動(dòng)點(diǎn)到兩個(gè)定點(diǎn)距離和取最小值為載體,求橢圓的標(biāo)準(zhǔn)方程,著重考查了點(diǎn)關(guān)于直線對(duì)稱(chēng)、橢圓的基本概念等知識(shí)點(diǎn),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△PAB中,已知A(-
6
,0)、B(
6
,0),動(dòng)點(diǎn)P滿(mǎn)足|PA|=|PB|+4.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)M(-2,0),N(2,0),過(guò)點(diǎn)N作直線l垂直于AB,且l與直線MP交于點(diǎn)Q,試在x軸上確定一點(diǎn)T,使得PN⊥QT.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(6,0),
b
=(-5,5),則
a
b
的夾角為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(-6,0),B(6,0),點(diǎn)P在直線l:x-y+12=0上,若橢圓以A、B為焦點(diǎn),以|PA|+|PB|的最小值為長(zhǎng)軸長(zhǎng),求這個(gè)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(-6,0),B(3,6),直線PQ:y=-
3
2
x
,則直線BA與PQ的位置關(guān)系是( 。
A、重合B、平行
C、垂直D、相交但不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△PAB中,已知A(-
6
,0)、B(
6
,0),動(dòng)點(diǎn)P滿(mǎn)足|PA|=|PB|+4.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)M(-2,0),N(2,0),過(guò)點(diǎn)N作直線l垂直于AB,且l與直線MP交于點(diǎn)Q,試在x軸上確定一點(diǎn)T,使得PN⊥QT.

查看答案和解析>>

同步練習(xí)冊(cè)答案