設(shè)P是雙曲線-y2=1右支上的一個動點,F(xiàn)是雙曲線的右焦點,已知A點的坐標是(3,1),求|PA|+|PF|的最小值.

分析:若設(shè)出P點坐標,把|PA|+|PF|表示出來,再求最值相當困難.畫出圖形,聯(lián)想雙曲線的定義,則可使問題迎刃而解.

解:設(shè)F′為雙曲線的左焦點,

    則|PF′|-|PF|=2,|PF|=|PF′|-2

∴|PA|+|PF|=|PA|+|PF′|-2,原問題轉(zhuǎn)化成了求|PA|+|PF′|的最小值問題,(如圖)(|PA|+|PF′|)min=|AF′|=.

∴ (|PA|+|PF|)min=(|PA|+|PF′|)min-2=-2.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
2
-y2=1

(1)求雙曲線C的漸近線方程;
(2)已知點M的坐標為(0,1).設(shè)P是雙曲線C上的點,Q是點P關(guān)于原點的對稱點.記λ=
MP
MQ
.求λ的取值范圍;
(3)已知點D,E,M的坐標分別為(-2,-1),(2,-1),(0,1),P為雙曲線C上在第一象限內(nèi)的點.記l為經(jīng)過原點與點P的直線,s為△DEM截直線l所得線段的長.試將s表示為直線l的斜率k的函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0),焦點為F1、F2,雙曲線G:x2-y2=m(m>0)的頂點是該橢圓的焦點,設(shè)P是雙曲線G上異于頂點的任一點,直線PF1、PF2與橢圓的交點分別為A、B和C、D,已知三角形ABF2的周長等于8
2
,橢圓四個頂點組成的菱形的面積為8
2

(1)求橢圓E與雙曲線G的方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1和k2,探求k1和k2的關(guān)系;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,試求出λ的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓E:
x2
8
+
y2
4
=1
焦點為F1、F2,雙曲線G:x2-y2=4,設(shè)P是雙曲線G上異于頂點的任一點,直線PF1、PF2與橢圓的交點分別為A、B和C、D.
(1)設(shè)直線PF1、PF2的斜率分別為k1和k2,求k1•k2的值;
(2)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
2
-y2 =1

(1)求雙曲線C的漸近線方程;
(2)已知點M的坐標為(0,1).設(shè)P是雙曲線C上的點,Q是點P關(guān)于原點的對稱點,記λ=
MP
MQ
.求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案