16、下列正確結(jié)論的序號(hào)是
②③

①命題?x,x2+x+1>0的否定是:?x,x2+x+1<0.
②命題“若ab=0,則a=0,或b=0”的否命題是“若ab≠0,則a≠0且b≠0”
③若函數(shù)f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則f(x)是奇函數(shù);
④函數(shù)y=f(x+1)與函數(shù)y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱.
分析:對(duì)于①全稱命題:“?x∈A,P(x)”的否定是特稱命題:“?x∈A,非P(x)”,結(jié)合已知中原命題“??x,x2+x+1>0”,易得到答案.
對(duì)于②根據(jù)一個(gè)命題的否命題是把原命題的題設(shè)和結(jié)論否定,寫出要求的命題的否命題,注意連接詞或與且的互化.
對(duì)于③利用函數(shù)f(x-1)的圖象可以由關(guān)于函數(shù)f(x)的圖象平移得到,判斷f(x)對(duì)稱性從而判斷f(x)是不是奇函數(shù);
對(duì)于④根據(jù)抽象函數(shù)圖象的平移知識(shí),以及y=f(x)的圖象與y=f(-x)的圖象關(guān)于y軸(即直線x=0)對(duì)稱,可求出所求.
解答:解:對(duì)于①∵原命題?x,x2+x+1>0”
∴命題“?x,x2+x+1>0”的否定是:
?x∈R,x2+x+1≤0,故錯(cuò);
對(duì)于②根據(jù)一個(gè)命題的否命題是把原命題的題設(shè)和結(jié)論否定,
∴命題“若ab=0,則a=0,或b=0”的否命題是“若ab≠0,則a≠0且b≠0”正確;
對(duì)于③利用函數(shù)f(x-1)的圖象可以由關(guān)于函數(shù)f(x)的圖象平移向右平移一個(gè)單位得到,故f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,從而判斷f(x)是奇函數(shù);正確;
對(duì)于④:y=f(10+x)可以看作是由y=f(x)的圖象向左平移10個(gè)單位得到的,
y=f(10-x)=f[-(x-10)]可以看作是由y=f(-x)的圖象向右平移10個(gè)單位得到的.
而y=f(x)的圖象與y=f(-x)的圖象關(guān)于y軸(即直線x=0)對(duì)稱,
故函數(shù)y=f(1+x)與y=f(1-x)的圖象的對(duì)稱軸l的方程是x=0.故錯(cuò).
故答案為:②③
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是命題的否定,其中熟練掌握全稱命題:“?x∈A,P(x)”的否定是特稱命題:“?x∈A,非P(x)”,是解答此類問(wèn)題的關(guān)鍵.本題還考查了抽象函數(shù)的圖象的對(duì)稱,以及奇偶函數(shù)圖象的對(duì)稱性,同時(shí)考查了轉(zhuǎn)化與劃歸的思想,屬于易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、下列正確結(jié)論的序號(hào)是
②③

①命題?x,x2+x+1>0的否定是:?x,x2+x+1<0;
②“若ab=0,則a=0,或b=0”的否命題是“若ab≠0,則a≠0且b≠0”;
③若函數(shù)f(x-1)的圖象關(guān)于直線x=1對(duì)稱,則f(x)是偶函數(shù);
④函數(shù)y=f(x+1)與函數(shù)y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列正確結(jié)論的序號(hào)是

①命題?x∈R,x2+x+1>0的否定是:?x∈R,x2+x+1<0.
②命題“若ab=0,則a=0,或b=0”的否命題是“若ab≠0,則a≠0且b≠0”.
③已知線性回歸方程是
y
=3+2x,則當(dāng)自變量的值為2時(shí),因變量的精確值為7.
④若a,b∈[0,1],則不等式a2+b2
1
4
成立的概率是
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列正確結(jié)論的序號(hào)是____________

       ①命題的否定是:;

       ②命題“若”的否命題是“若”;

       ③已知線性回歸方程是,則當(dāng)自變量的值為時(shí),因變量的精確值為

       ④在對(duì)兩個(gè)分類變量進(jìn)行獨(dú)立性檢驗(yàn)時(shí)計(jì)算得,那么就是的把握認(rèn)為這兩個(gè)分類變量有關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列正確結(jié)論的序號(hào)是____________

         ①命題的否定是:;

         ②命題“若”的否命題是“若”;

         ③已知線性回歸方程是,則當(dāng)自變量的值為時(shí),因變量的精確值為;

         ④在對(duì)兩個(gè)分類變量進(jìn)行獨(dú)立性檢驗(yàn)時(shí)計(jì)算得,那么就是的把握認(rèn)為這兩個(gè)分類變量有關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案