.在矩形ABCD中,AB = 4,BC = 3,沿對角線AC把矩形折成二面角D-AC-B,并且D點在平面ABC內(nèi)的射影落在AB上.若在四面體D-ABC內(nèi)有一球,當球的體積最大時,球的半徑是          .

 

【答案】

【解析】  當球的體積最大時,球與三棱錐D -ABC 的各面相切,設球隊半徑為R ,則VD -ABC = VO -ABC +VO -DAC + VO -DBA + VO -DAB = R(S△ABC + S△DAC + S△DBC + S△DAB).由題設易知AD⊥平面DBC, 又∵BD平面DBC,∴AD⊥BD,∴△ABD為直角三角形,∵AB = 4,AD = 3,∴BD = ,∴S△ABC = AD·BD = ×3×= .在△DAB和△DBC中,∵AD = BC,AB = DC,DB = DB,∴△DAB≌△BCD,故S△DBC = ,VD -ABC = VA –DBC = ×3×= ,∴S△ABC = S△ADC = 6,∴R(6 + 6 + + ),于是( 4 + )R = , 解得R =

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在矩形ABCD中,AD=2AB=2,點E是AD的中點,將△DEC沿CE折起到△D′EC的位置,使二面角D′-EC-B是直二面角.
(1)證明:BE⊥C D′;
(2)求二面角D′-BC-E的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在矩形ABCD中,E是CD的中點,
AB
=
a
,
AD
=
b
,用
a
b
表示
BE
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在矩形ABCD中,AB=5,BC=7,在其中任取一點P,使?jié)M足∠APB>90°,則P點出現(xiàn)的概率為
56
56

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在矩形ABCD中,AB=2,AD=1,E為BC的中點,F(xiàn)在邊CD上,
AB
AF
=
2
,則
AE
BF
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)(1)如圖,在平面直角坐標系xOy中,一單位圓的圓心的初始位置在(0,1),此時圓上一點P的位置在(0,0),圓在x軸上沿正向滾動.當圓滾動到圓心位于(2,1)時,
OP
的坐標為
 

(2)在矩形ABCD中,邊AB、AD的長分別為2、1,若M、N分別是邊BC、CD上的點,且滿足
|
BM
|
|
BC
|
=
|
CN
|
|
CD
|
,則
AM
AN
的取值范圍是
 

查看答案和解析>>

同步練習冊答案