精英家教網 > 高中數學 > 題目詳情
設坐標原點為O,拋物線y2=2x上兩點A、B在該拋物線的準線上的射影分別是A′、B′,已知|AB|=|AA′|+|BB′|,則
OA
OB
=
-
3
4
-
3
4
分析:設拋物線的焦點為F,準線為l.根據根據拋物線線的定義,得|AB|=|AA′|+|BB′|=|AF|+|BF|,可得AB是拋物線經過焦點F的弦.然后根據A、F、B三點共線,利用斜率公式列式,化簡整理得到A、B兩點縱坐標之積為-1,橫坐標之積等于
1
4
,最后利用向量數量積的坐標公式,可算出
OA
OB
的值.
解答:解:設拋物線的焦點為F,準線為l
∵AA′⊥l,點A在拋物線上
∴根據拋物線線的定義,得|AA′|=|AF|.
同理可得|BB′|=|BF|,
∵|AB|=|AA′|+|BB′|,
∴|AB|=|AF|+|BF|,可得AB是拋物線經過焦點F的弦.
因為拋物線方程為y2=2x,所以焦點F坐標為(
1
2
,0),
設A(
1
2
y12
,y1),B(
1
2
y22
,y2),
∵A、F、B三點共線
∴kAF=kBF,可得
y1-0
1
2
y12-
1
2
=
y2-0
1
2
y22-
1
2
,
化簡整理得:(y1y2+1)(y1-y2)=0,
顯然y1-y2≠0,所以y1y2=-1
OA
OB
=
1
2
y12
1
2
y22
+y1y2=
1
4
(y1y22+y1y2=
1
4
-1=-
3
4

故答案為:-
3
4
點評:本題給出拋物線的焦點弦的端點為A、B,求向量
OA
、
OB
的數量積,著重考查了拋物線的幾何性質、直線斜率的公式等知識點,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,設拋物線方程為,M為直線上任意一點,過M引拋物

線的切線,切點分別為A,B

(I)求證A,M,B三點的橫坐標成等差數列;

(Ⅱ)已知當M點的坐標為(2,一2p)時,.求此時拋物線的方程

(Ⅲ)是否存在點M.使得點C關于直線AB的對稱點D在拋物線上,其中,點C滿足(O為坐標原點)若存在。求出所有適合題意的點M的坐標;

若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案