已知數(shù)學(xué)公式恒成立的x的取值范圍是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:由m>0,|aix-2|,利用均值不等式得到|aix-2|≤2,由此能求出結(jié)果.
解答:∵m>0,∴=m+≥2,
|aix-2|,i=1,2.
∴|aix-2|≤2,
解得0≤x≤,(ai>0),
∵a1>a2>0,
∴0≤x≤
故選C.
點評:本題考查函數(shù)恒等式的應(yīng)用,解題時要認(rèn)真審題,注意均值不等式和含絕對值不等式的性質(zhì)的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)g(x)=2x+
1
x
,x∈[
1
4
,4].
(1)求g(x)的單調(diào)區(qū)間;(簡單說明理由,不必嚴(yán)格證明)
(2)證明g(x)的最小值為g(
2
2
);
(3)設(shè)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=sinx,x∈[-
π
2
,
π
2
],則f1(x)=-1,x∈[-
π
2
,
π
2
],f2(x)=sinx,x∈[-
π
2
,
π
2
],設(shè)φ(x)=
g(x)+g(2x)
2
+
|g(x)-g(2x)|
2
,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c在x=0和x=2處取得極值,且函數(shù)y=f(x)的圖象經(jīng)過點(1,0).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)A、B為函數(shù)y=f(x)圖象上任意相異的兩個點,試判定直線AB和直線4x+y-3=0的位置關(guān)系并說明理由;
(3)設(shè)函數(shù)g(x)=x2+mx+6,若對任意t∈[-2,2]且x∈[-2,2],f(t)≤g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南省昆明一中高三(上)第二次雙基數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知恒成立的x的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南省昆明一中高三(上)第二次雙基數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知恒成立的x的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案