17.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(m,2),若$\overrightarrow{a}$∥$\overrightarrow$,則m=4.

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow$,∴m-4=0,解答m=4.
故答案為:4.

點評 本題考查了向量共線定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若x,x-1,2x-2是等比數(shù)列{an}的前三項,則an=-2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知雙曲線$\frac{x^2}{3}-\frac{y^2}{m}=1({m>0})$的離心率為e,經(jīng)過第一、三象限的漸近線的斜率為k,且e≥$\sqrt{2}$k.
(1)求m的取值范圍;
(2)設(shè)條件p:e≥$\sqrt{2}$k;條件q:m2-(2a+2)m+a(a+2)≤0.若p是q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若直線l的斜率為$\sqrt{3}$,則其傾斜角為(  )
A.45°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若角α的終邊經(jīng)過點P(4,-3),則sinα=( 。
A.±$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.±$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.sin18°cos12°+cos18°sin12°=( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的漸近線方程為( 。
A.y=±$\frac{3}{4}$xB.y=±$\frac{4}{3}$xC.y=±$\frac{3}{5}$xD.y=±$\frac{5}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知動點P(x,y)到定點(1,1)的距離與到定直線x+y+2=0的距離的比值為$\frac{\sqrt{2}}{2}$,則動點P的軌跡是雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知在△ABC中,角A,B,C分別為△ABC的三個內(nèi)角,若命題p:sinA>sinB,命題q:A>B,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案