已知等比數(shù)列中各項(xiàng)均為正,有,,
等差數(shù)列中,,點(diǎn)在直線上.
(1)求的值;(2)求數(shù)列,的通項(xiàng);
(3)設(shè),求數(shù)列的前n項(xiàng)和
(1);(2),;(3).

試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051721138413.png" style="vertical-align:middle;" />, 又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051721123477.png" style="vertical-align:middle;" />是正項(xiàng)等比數(shù)列,故,利用等比數(shù)列的某兩項(xiàng)可知其通項(xiàng)公式的求解;(2)由可得,進(jìn)而求得的通項(xiàng),,點(diǎn)在直線上得到,得到是以1為首項(xiàng)以為2公差的等差數(shù)列∴(3)表示出,并運(yùn)用列項(xiàng)求和解決.
(1)∵ ∴ ,又, 解得(舍去) ,解得(舍去)(2)∵ ∴,∵中各項(xiàng)均為正,∴,又∴即數(shù)列是以2為首項(xiàng)以為2公比的等比數(shù)列 ∴ ∵點(diǎn)在直線上,∴,又∴數(shù)列是以1為首項(xiàng)以為2公差的等差數(shù)列∴(3)由(1)得 
因此
,
即:,∴.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列的前項(xiàng)和為,,,等差數(shù)列滿足,
(1)求數(shù)列,數(shù)列的通項(xiàng)公式;
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

[2014·洛陽(yáng)統(tǒng)考]等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S1,2S2,3S3成等差數(shù)列,則{an}的公比為(  )
A.2B.3C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(5分)(2011•天津)已知{an}為等差數(shù)列,Sn為{an}的前n項(xiàng)和,n∈N*,若a3=16,S20=20,則S10值為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列通項(xiàng)為,則         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列的前n項(xiàng)和為,,且對(duì)任意的均滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,,),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)已知數(shù)列為等差數(shù)列,且,數(shù)列的前項(xiàng)和為,
(Ⅰ)求數(shù)列,的通項(xiàng)公式; 
(Ⅱ)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

 等差數(shù)列中,,若前項(xiàng)和取得最大,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)等差數(shù)列的前項(xiàng)和為,若,則的值是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案