分析 由題意可得函數(shù)在(-∞,0]上為減函數(shù),在(0,+∞)上單調(diào)遞增,且 f($\frac{1}{2}$)=f(-$\frac{1}{2}$)=0,再根據(jù)函數(shù)f(x)的單調(diào)性示意圖可得不等式f(log4x)>0,即得log4x>$\frac{1}{2}$,或log4x<-$\frac{1}{2}$,由此求得x的范圍.
解答 解:f(x)是定義在R上的偶函數(shù),且在(-∞,0]上為減函數(shù),故函數(shù)f(x)在(0,+∞)上單調(diào)遞增.
∵f($\frac{1}{2}$)=0,∴f(-$\frac{1}{2}$)=0,
故函數(shù)f(x)的單調(diào)性示意圖如圖所示:
則由不等式f(log4x)>0可得log4x>$\frac{1}{2}$,或log4x<-$\frac{1}{2}$,
求得x>2,或 0<x<$\frac{1}{2}$,
故不等式的解集為(0,$\frac{1}{2}$)∪(2,+∞),
故答案為:(0,$\frac{1}{2}$)∪(2,+∞).
點(diǎn)評 本題主要考查函數(shù)的單調(diào)性、奇偶性的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-3≤x≤0或x≥3} | B. | {x|x≤-3或-3≤x≤0} | C. | {x|-3≤x≤3} | D. | {x|x≤-3或x≥3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2017 | B. | -2016 | C. | -2015 | D. | -2014 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-2i | B. | 1+2i | C. | i-1 | D. | 1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com