已知直線y=-2與函數(shù)y=tan(ωx+數(shù)學(xué)公式)圖象相鄰兩交點間的距離為數(shù)學(xué)公式,將y=tan(ωx+數(shù)學(xué)公式)圖象向右平移φ(φ>0)個單位后,其圖象關(guān)于原點對稱,則φ的最小值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:由題意求出函數(shù)的周期,確定ω,利用平移后函數(shù)的對稱性求出φ的最小值即可.
解答:因為直線y=-2與函數(shù)y=tan(ωx+)圖象相鄰兩交點間的距離為
所以T=,所以,ω=2,
將y=tan(2x+)圖象向右平移φ(φ>0)個單位后,
得到函數(shù)y=tan[2(x-φ)+]=tan(2x-2φ+),
其圖象關(guān)于原點對稱,所以φ的最小值為2φ=,所以φ=
故選D.
點評:本題考查三角函數(shù)的解析式的求法,三角函數(shù)的圖象的平移,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函教f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(0<b<A)的三個相鄰交點的橫坐標(biāo)分別是2,4,8,則f(x)的單調(diào)遞增區(qū)間是( 。
A、[6kπ,6kπ+3],k∈ZB、[6k-3,6k],k∈ZC、[6k,6k+3],k∈ZD、[6kπ-3,6kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三下學(xué)期二調(diào)考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函教的圖象與直線y = b (0<b<A)的三個相鄰交點的橫坐標(biāo)分別是2,4,8,則的單調(diào)遞增區(qū)間是(    )

A.         B.    

C.       D. 無法確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省五校協(xié)作體高三(上)聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函教f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(0<b<A)的三個相鄰交點的橫坐標(biāo)分別是2,4,8,則f(x)的單調(diào)遞增區(qū)間是( )
A.[6kπ,6kπ+3],k∈Z
B.[6k-3,6k],k∈Z
C.[6k,6k+3],k∈Z
D.[6kπ-3,6kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省聊城市東阿縣曹植培訓(xùn)學(xué)校高三(下)2月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知函教f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(0<b<A)的三個相鄰交點的橫坐標(biāo)分別是2,4,8,則f(x)的單調(diào)遞增區(qū)間是( )
A.[6kπ,6kπ+3],k∈Z
B.[6k-3,6k],k∈Z
C.[6k,6k+3],k∈Z
D.[6kπ-3,6kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省聊城市東阿縣曹植培訓(xùn)學(xué)校高三(下)2月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函教f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(0<b<A)的三個相鄰交點的橫坐標(biāo)分別是2,4,8,則f(x)的單調(diào)遞增區(qū)間是( )
A.[6kπ,6kπ+3],k∈Z
B.[6k-3,6k],k∈Z
C.[6k,6k+3],k∈Z
D.[6kπ-3,6kπ],k∈Z

查看答案和解析>>

同步練習(xí)冊答案