如圖,四棱錐A-BCDE中,△ABC是正三角形,四邊形BCDE是矩形,且平面ABC⊥平面BCDE,AB=2,AD=4.

(Ⅰ)若點(diǎn)G是AE的中點(diǎn),求證:AC∥平面BDG;

(Ⅱ)試問點(diǎn)F在線段AB上什么位置時(shí),二面角B-CE-F的余弦值為

答案:
解析:

  (Ⅰ)證明:設(shè),交于點(diǎn),連接,易知的中位線,故,又平面平面,得平面. 4分

  (Ⅱ)解:如圖,建立空間直角坐標(biāo)系,在中,斜邊,,得,,.設(shè),得

  設(shè)平面的一個(gè)法向量為,由,即,,取,得

  而平面的法向量,∴由題得,

  即,解得(舍去)或

  ∴當(dāng)點(diǎn)在線段的中點(diǎn)時(shí),二面角的余弦值為. 14分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD是底面邊長為1的正方形,PD⊥BC,PD=1,PC=
2

(Ⅰ)求證:PD⊥面ABCD;
(Ⅱ)求二面角A-PB-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南寧模擬)如圖:四棱錐A-BCQP中,二面角A-BC-P為90°,且∠BAC=∠BCQ=90°,∠CBP=45°BP+AP=
2
BC,AB=AC=
2
B.
(Ⅰ)求證:平面AB⊥平面ACQ;
(Ⅱ)求直線AP與平面ACQ所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重慶八中2009屆高三下學(xué)期第二次月考數(shù)學(xué)理科試題 題型:044

如圖,四棱錐A-BCDE中,底面BCDE為矩形,側(cè)面ABC⊥底面BCDE,BC=2,CD=,AB=AC.

(Ⅰ)證明:AD⊥CE;

(Ⅱ)設(shè)CE與平面ABE所成的角為45°,求二面角C-AD-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣西南寧市高三第三次適應(yīng)性測試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖:四棱錐A-BCQP中,二面角A-BC-P為90°,且∠BAC=∠BCQ=90°,∠CBP=45°BP+AP=BC,AB=AC=B.
(Ⅰ)求證:平面AB⊥平面ACQ;
(Ⅱ)求直線AP與平面ACQ所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣西南寧市高三第三次適應(yīng)性測試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖:四棱錐A-BCQP中,二面角A-BC-P為90°,且∠BAC=∠BCQ=90°,∠CBP=45°BP+AP=BC,AB=AC=B.
(Ⅰ)求證:平面AB⊥平面ACQ;
(Ⅱ)求直線AP與平面ACQ所成角的大。

查看答案和解析>>

同步練習(xí)冊答案