若f(x)=asinx+b(a,b為常數(shù))的最大值是5,最小值是-1,則的值為( )
A.-
B.或-
C.-
D.
【答案】分析:根據(jù)題意可知a為非零常數(shù),因此由-1≤sinx≤1分a>0和當a<0兩種情況加以討論,分別建立關(guān)于a、b的方程組,解之可得到a、b的值,從而得到的值,得到本題答案.
解答:解:∵-1≤sinx≤1,
∴a>0時,f(x)在sinx=1時,取得最大值a+b=5;在sinx=-1時,取得最大值-a+b=-1.
聯(lián)解可得a=3,b=2.此時的值為
當a<0時,f(x)在sinx=-1時,取得最大值-a+b=5;在sinx=1時,取得最大值a+b=-1.
聯(lián)解可得a=-3,b=2.此時的值為-
故選:B
點評:本題給出函數(shù)f(x)=asinx+b的最大最小值,求實數(shù)a、b之值.著重考查了三角函數(shù)的圖象與性質(zhì)、函數(shù)的值域與最值等知識,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若f(x)=Asin(ωx+φ)+1(ω>0,|φ|<π)對任意實數(shù)t,都有f(t+
π
3
)=f(-t+
π
3
).記g(x)=Acos(ωx+φ)-1,則g(
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若f(x)=Asin(ωx+φ)+1(ω>0,|φ|<π)對任意實數(shù)t,都有f(t+
π
3
)=f(-t+
π
3
).記g(x)=Acos(ωx+φ)-1,則g(
π
3
)=______.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年數(shù)學寒假作業(yè)(04)(解析版) 題型:填空題

若f(x)=Asin(ωx+φ)+1(ω>0,|φ|<π)對任意實數(shù)t,都有f(t+)=f(-t+).記g(x)=Acos(ωx+φ)-1,則g()=   

查看答案和解析>>

科目:高中數(shù)學 來源:2012年廣東省江門市恩平市附城中學高考二輪復習綜合試卷(文科)(解析版) 題型:解答題

若f(x)=Asin(ωx+φ)+1(ω>0,|φ|<π)對任意實數(shù)t,都有f(t+)=f(-t+).記g(x)=Acos(ωx+φ)-1,則g()=   

查看答案和解析>>

科目:高中數(shù)學 來源:2009年江蘇省無錫市部分學校高三調(diào)研數(shù)學試卷(含附加題)(解析版) 題型:解答題

若f(x)=Asin(ωx+φ)+1(ω>0,|φ|<π)對任意實數(shù)t,都有f(t+)=f(-t+).記g(x)=Acos(ωx+φ)-1,則g()=   

查看答案和解析>>

同步練習冊答案